262 research outputs found

    In-vitro application of a qatari burkholderia cepacia strain (QBC03) in the biocontrol of mycotoxigenic fungi and in the reduction of ochratoxin a biosynthesis by aspergillus carbonarius

    Get PDF
    Mycotoxins are secondary metabolites produced by certain filamentous fungi, causing human and animal health issues upon the ingestion of contaminated food and feed. Among the safest approaches to the control of mycotoxigenic fungi and mycotoxin detoxification is the application of microbial biocontrol agents. Burkholderia cepacia is known for producing metabolites active against a broad number of pathogenic fungi. In this study, the antifungal potential of a Qatari strain of Burkholderia cepacia (QBC03) was explored. QBC03 exhibited antifungal activity against a wide range of mycotoxigenic, as well as phytopathogenic, fungal genera and species. The QBC03 culture supernatant significantly inhibited the growth of Aspergillus carbonarius, Fusarium culmorum and Penicillium verrucosum in PDA medium, as well as A. carbonarius and P. verrucosum biomass in PDB medium. The QBC03 culture supernatant was found to dramatically reduce the synthesis of ochratoxin A (OTA) by A. carbonarius, in addition to inducing mycelia malformation. The antifungal activity of QBC03’s culture extract was retained following thermal treatment at 100 °C for 30 min. The findings of the present study advocate that QBC03 is a suitable biocontrol agent against toxigenic fungi, due to the inhibitory activity of its thermostable metabolites. View Full-TextFunding: Qatar National Research Fund (a member of Qatar Foundation) under National Priorities Research Program (NPRP) grant #NPRP8-392-4-003.Scopu

    Texture-Based Analysis of Fetal Organs in Fetal Growth Restriction

    Get PDF
    Fetal growth restriction (FGR) is common, affecting around 10% of all pregnancies. Growth restricted fetuses fail to achieve their genetically predetermined size and often weigh <10th centile for gestation. However, even appropriately grown fetuses can be affected, with the diagnosis of FGR missed before birth. Babies with FGR have a higher rate of stillbirth, neonatal morbidity such as breathing problems, and neurodevelopmental delay. FGR is usually due to placental insufficiency leading to poor placental perfusion and fetal hypoxia. MRI is increasingly used to image the fetus and placenta. Here we explore the use of novel multi-compartment Intravoxel Incoherent Motion Model (IVIM)-based models for MRI fetal and placental analysis, to improve understanding of FGR and quantify abnormalities and biomarkers in fetal organs. In 12 normally grown and 12 FGR gestational-age matched pregnancies (Median 28+ 4 wks±3+ 3 wks) we acquired T2 relaxometry and diffusion MRI datasets. Decreased perfusion, pseudo-diffusion coefficient, and fetal blood T2 values in the placenta and fetal liver were significant features distinguishing between FGR and normal controls (p-value <0.05). This may be related to the preferential shunting of fetal blood away from the fetal liver to the fetal brain that occurs in placental insufficiency. These features were used to predict FGR diagnosis and gestational age at delivery using simple machine learning models. Texture analysis was explored to compare Haralick features between control and FGR fetuses, with the placenta and liver yielding the most significant differences between the groups. This project provides insights into the effect of FGR on fetal organs emphasizing the significant impact on the fetal liver and placenta, and the potential of an automated approach to diagnosis by leveraging simple machine learning models

    In vitro MATURATION OF DROMEDARY SHE-CAMEL OOCYTES EXPOSED TO LASER IRRADIATION

    Get PDF
    The objective of this study was to study the effect of laser irradiation on maturation rate of dromedary she-camel oocytes.  Although in vitro fertilization (IVF) technique in she-camel has been established, but maturation rate of camel oocytes is still low comparing with other animal species. Several studies performed to improve in-vitro maturation rate using different types of media with different incubation times. In order to establish high sensitive and low cost maturation improvement technique, laser irradiation has been suggested in the present work. Cumulus oocytes complexes (COCʼs) were collected from ovaries by aspiration method and grade (A) oocytes were chosen and divided into five different groups, 62 oocytes served as control group,  an un-irradiated (group 1), 64 oocytes exposed to 2 minutes of laser irradiation (group 2), 57 oocytes exposed to 3 minutes of laser irradiation (group 3), 49 oocytes exposed to 4 minutes of laser irradiation (group 4) and 52 oocytes exposed to 5 minutes of laser irradiation (group 5) with a total output power of 3 mW for different exposure durations; 2, 3, 4 and 5 minutes.  Afterwards, oocytes were matured in TCM-199 medium at 38.5oC and 5% CO2 in humidified air for 42 h. Maturation rate was calculated based on expulsion of the first polar body and statistically analyzed by one way ANOVA test.   The obtained results showed that, the oocytes reached germinal vesicles (GV) which exposed to laser beam for 5 minutes at 488 nm wavelength represent significantly (P<0.05) the highest value (42.31%) compared to control (not irradiated, 16.13%). However, other groups of GV showed insignificant differences with the control group. The metaphase II (M II) in the control oocytes represents significantly (P<0.05) the highest value (75.81%) compared to 3-5 minutes exposed groups. The degenerated oocytes exposed to laser beam for 5 minutes at 488 nm wavelength represent significantly (P<0.05) the highest value (40.38%) compared to control (not irradiated, 8.06%). In conclusion‚ these results indicated that the exposure of laser irradiation for 2 minutes may improve in-vitro nuclear maturation of immature oocytes in dromedary she-camels as compared to other durations (3-5 minutes) at 488 nm wavelength (blue laser)

    Multi-quasiparticle gamma-band structure in neutron-deficient Ce and Nd isotopes

    Full text link
    The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I=10 aligning states in 134Ce and both exhibiting a neutron character.Comment: 15 pages, 9 figures, accepted by Nucl. Phys.

    Effects of a brief mindfulness-based intervention on emotional regulation and levels of mindfulness in senior students

    Get PDF
    Mindfulness-based interventions have been applied in diverse populations and achieved mental health benefits. This study examined the effects of a brief mindfulness program for emotional regulation and levels of mindfulness on senior students in Brazil. The intervention consisted of six weekly meetings attended by 30 participants. It is a pre-experimental research, with pre- and post-test comparative and correlation measurements. The preliminary results, which relied on parametrical and non-parametrical tests, revealed a reduction in total emotional regulation difficulties (p = 0.0001; r = − 0.55). Also, there was an increase in the levels of mindfulness in the subtests for both dimensions under evaluation: “Awareness” (p = 0.0001; d = 0.77) and “Acceptance” (p = 0.048; d = 0.37). By associating the amount of meditative practices performed by students with the variables, a significant positive correlation was found with the mindfulness dimension “Awareness” (rP = 0.422; p = 0.020), and there was a significant negative correlation with Difficulties in emotion regulation (rS = − 0.478; p = 0.008) and with its respective subscales “Non-acceptance” (rS = − 0.654; p = 0.0001) and “Clarity” (rS = − 0.463; p = 0.010). In conclusion, the application of a brief mindfulness-based intervention is promising in Brazilian university contexts; moreover, it can bring benefits to students, e.g., an increase in emotion regulation as well as in levels of mindfulness. We suggest that further research should use an experimental design and follow-up.info:eu-repo/semantics/publishedVersio

    Assessment of left ventricular function by three-dimensional echocardiography.

    Get PDF
    Accurate determination of LV volume, ejection fraction and segmental wall motion abnormalities is important for clinical decision-making and follow-up assessment. Currently, echocardiography is the most common used method to obtain this information. Three-dimensional echocardiography has shown to be an accurate and reproducible method for LV quantitation, mainly by avoiding the use of geometric assumptions. In this review, we describe various methods to acquire a 3D-dataset for LV volume and wall motion analysis, including their advantages and limitations. We provide an overview of studies comparing LV volume and function measurement by various gated and real-time methods of acquisition compared to magnetic resonance imaging. New technical improvements, such as automated endocardial border detection and contrast enhancement, will make accurate on-line assessment with little operator interaction possible in the near future

    Identification of Kinases Regulating Prostate Cancer Cell Growth Using an RNAi Phenotypic Screen

    Get PDF
    As prostate cancer progresses to castration-resistant disease, there is an increase in signal transduction activity. Most castration-resistant prostate tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes, despite the near absence of circulating androgen in these patients. The AR is regulated not only by its cognate steroid hormone, but also by interactions with a constellation of co-regulatory and signaling molecules. Thus, the elevated signaling activity that occurs during progression to castration resistance can affect prostate cancer cell growth either through the AR or independent of the AR. In order to identify signaling pathways that regulate prostate cancer cell growth, we screened a panel of shRNAs targeting 673 human kinases against LNCaP prostate cancer cells grown in the presence and absence of hormone. The screen identified multiple shRNA clones against known and novel gene targets that regulate prostate cancer cell growth. Based on the magnitude of effect on growth, we selected six kinases for further study: MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1. Knockdown of these kinases decreased cell growth in both androgen-dependent and castration-resistant prostate cancer cells. However, these kinases had different effects on basal or androgen-induced transcriptional activity of AR target genes. MAP3K11 knockdown most consistently altered transcription of AR target genes, suggesting that MAP3K11 affected its growth inhibitory effect by modulating the AR transcriptional program. Consistent with MAP3K11 acting on the AR, knockdown of MAP3K11 inhibited AR Ser 650 phosphorylation, further supporting stress kinase regulation of AR phosphorylation. This study demonstrates the applicability of lentiviral-based shRNA for conducting phenotypic screens and identifies MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1 as regulators of prostate cancer cell growth. The thorough evaluation of these kinase targets will pave the way for developing more effective treatments for castration-resistant prostate cancer
    corecore