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Abstract. Fetal growth restriction (FGR) is common, affecting around
10% of all pregnancies. Growth restricted fetuses fail to achieve their
genetically predetermined size and often weigh <10th centile for gesta-
tion. However, even appropriately grown fetuses can be affected, with the
diagnosis of FGR missed before birth. Babies with FGR have a higher
rate of stillbirth, neonatal morbidity such as breathing problems, and
neurodevelopmental delay. FGR is usually due to placental insufficiency
leading to poor placental perfusion and fetal hypoxia. MRI is increasingly
used to image the fetus and placenta. Here we explore the use of novel
multi-compartment Intravoxel Incoherent Motion Model (IVIM)-based
models for MRI fetal and placental analysis, to improve understanding
of FGR and quantify abnormalities and biomarkers in fetal organs. In
12 normally grown and 12 FGR gestational-age matched pregnancies
(Median 28+4wks±3+3wks) we acquired T2 relaxometry and diffusion
MRI datasets. Decreased perfusion, pseudo-diffusion coefficient, and fe-
tal blood T2 values in the placenta and fetal liver were significant features
distinguishing between FGR and normal controls (p-value <0.05). This
may be related to the preferential shunting of fetal blood away from the
fetal liver to the fetal brain that occurs in placental insufficiency. These
features were used to predict FGR diagnosis and gestational age at deliv-
ery using simple machine learning models. Texture analysis was explored
to compare Haralick features between control and FGR fetuses, with the
placenta and liver yielding the most significant differences between the
groups. This project provides insights into the effect of FGR on fetal or-
gans emphasizing the significant impact on the fetal liver and placenta,
and the potential of an automated approach to diagnosis by leveraging
simple machine learning models.
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1 Introduction

The term Fetal Growth Restriction (FGR) is used to describe a fetus that has
not reached their genetic growth potential, due to placental insufficiency causing
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inadequate supply of oxygen and nutrients [1]. FGR is a clinical diagnosis, de-
fined by the Delphi consensus standardised definitions [2], and is divided into two
different phenotypes, with onset either early (less than 32 weeks gestational age)
or late in gestation. It is associated with high rates of stillbirth [3] and neonatal
morbidity including increased rates of cerebral palsy, bronchopulmonary dyspla-
sia, and cardiovascular disease long term [4]. There is currently no treatment for
FGR, therefore clinicians must weigh the risks of prematurity against the risk
of hypoxia and death in utero to determine the optimal delivery time. There are
limited clinical tools to do this, so at present, clinicians follow national guidelines
to make this decision [5].

MRI is increasingly used to image the placental circulation. The DECIDE
multi-compartment model separates fetal and maternal flow characteristics of
the placenta allowing measurement of the relative proportions of vascular spaces
[6,7]. When applied in early-onset FGR, it identified reduced feto-placental blood
oxygen saturation, where the degree of abnormality correlated with disease sever-
ity defined by ultrasound fetal and maternal arterial Doppler findings [8].

The motivation for this research was to compare MR derived parameters re-
lating to perfusion and oxygenation within the placenta and three fetal organs
(the brain, liver and lungs) between normally grown pregnancies and those com-
plicated by early onset FGR, through multi-compartment models and texture
analysis. Distinguishing features were then used to predict FGR diagnosis and
gestational age (GA) at delivery via simple machine learning models.

2 Methods

2.1 Data

Patient MRI scans of voxel resolution 1.9x1.9x6mm were acquired using the ac-
quisition parameters from [6] (enabling both T2 relaxometry and diffusion MRI
fitting), using a 1.5 T Siemens Avanto and performed under free-breathing. The
dataset consisted of 12 early-onset FGR [2] ranging between [24+2, 33+6] ges-
tation weeks+days, and 12 control pregnancies with MR data ranged between
[25+1, 34+0] GA interval, (Median 28+4wks±3+3wks) respectively. Specific de-
tails on subject inclusion criteria are available in [6]. The study was approved
by the UK National Research Ethics Service and all participants gave written
informed consent (REC reference 15/LO/1488).

There are biological mechanisms that may cause differences in the distribu-
tion of blood perfusion throughout the fetus in FGR. To investigate this, man-
ual segmentation of the placenta, liver, lungs and brain was accomplished using
itk-SNAP software. The resultant 3D mask files were used within the NiftyFit
package for multi-parametric model-fitting [6], and to perform texture analysis.

2.2 Model Fitting

Model fitting techniques were applied to each organ segmentation over the av-
eraged ROI signal and on a voxelwise scale, yielding quantitative metrics for
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Fig. 1. Succeeding pre-processing of the data, model fitting techniques were applied
to yield parameters describing various signals extracted from the placenta and fetal
organs of interest. These parameters were then employed to perform texture analysis
from multi-contrast MRI modelling. Results from the model fitting were used as inputs
to the classifier and regressor to predict a diagnosis of FGR and the gestational age at
delivery.

both approaches. Non-linear least squares were used to perform the fitting, with
voxelwise fitting being initialised with the ROI parameter estimates - enhancing
SNR. A range of models were explored, including simple T2 and Apparent Dif-
fusion Coefficient (ADC) estimation, as well as more complex models based on
Intravoxel Incoherent Motion Model (IVIM) [9] and DECIDE [6].

The IVIM model describes perfusion as a pseudodiffusion process (repre-
sented by a pseudodiffusion coefficient, D∗), by characterising the collective mo-
tion of blood water molecules within the vessel network as a random walk. The
IVIM model also incorporates “true” diffusion of water molecules (ADC), mod-
elling the signal as

S = S0[fe−bD∗
+ (1− f)e−bADC], (1)

where f is the perfusion fraction (volume occupied by incoherently flowing blood
in a given voxel), b is the b-value, S is the measured signal and S0 the baseline
signal, [10]. This can be extended to incorporate T2 relaxometry as

S = S0e
−t/T2 [fe−bD∗

+ (1− f)e−bADC]. (2)

However, this model presents inherent limitations, as it assumes both vascular
and tissue compartments (parametrised by pseudo-diffusion and true diffusion
coefficients) have the same T2 value, leading to an overestimation of the pseudo-
diffusion volume fraction f with increasing echo time (t) [11].Thus, the analysis
presented incorporates more complex models, accounting for varying blood and
tissue T2 values:

S(b, t) = S0[fe−bD∗
e−t/T2p + (1− f)e−bADCe−t/T2t ], (3)
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with f being the perfusion fraction, T2p and T2t being the transverse relaxation
time for the pseudo-diffusion compartment (blood) and true diffusion compart-
ment (tissue), respectively [11].

The DECIDE model [6] was also applied specifically to the placenta, which
assumes three compartments with distinct diffusivity and relaxivity: fetal capil-
laries, trophoblast space and maternal blood pool. This model, given by Equation
4, enables computation of novel placental biomarkers including maternal fetal
blood volume ratio and fetal blood saturation.

S(b, t) = S0 [fe−bD∗−tRfb
2 + (1− f) e−bADC (νe−tRmb

2 + (1− ν) e−tRts
2 )]. (4)

Here, Rfb
2 , Rmb

2 and Rts
2 represent the inverse of relaxation transverse relax-

ation times for fetal blood, maternal blood and trophoblast space, respectively;
and ν is the maternal blood volume fraction.

2.3 Texture Analysis

The aim of texture analysis was to examine the spatial arrangement of intensities
in the segmented organs. To achieve this, Haralick features were extracted from
the grey level co-occurrence matrix to describe the overall image texture us-
ing measures encompassing energy, entropy, correlation, contrast, variance, and
homogeneity [12].

These features were computed for each subject on all model fitting maps,
as well as the original IVIM T2-weighted MRI scan, to yield interpretable tex-
ture descriptors [12,13]. The images were quantised into grey level bins of fixed
equal width for between-subject texture feature value comparisons. Single-factor
analysis of each feature was conducted between the FGR and control patients.

2.4 Statistical Methods & Feature Selection

Statistical analysis was performed on the model fitting maps to identify the most
significant parameters in differentiating between the control and FGR cohorts.
A Shapiro–Wilk test was used to confirm normality of the results. T-tests were
then carried out between the cohorts for all the model fitted parameters, Har-
alick features, and organ ratio parameters. Results with p-value less than 0.05
indicated statistically significant differences between the control and FGR group
means.

2.5 Machine Learning for FGR Diagnosis & Severity Assessment

Binary Classification Model A linear logistic regression model was trained to
predict healthy or FGR using an 80/20% train-test split. The best regularisation
parameters were derived by performing a grid search and 3-fold cross-validation,
yielding a final model with regularisation strength of 0.001 and an L1 ratio of 0,
i.e. L2 regularisation.
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Regression Model A linear regression model was trained to predict the scan-
to-delivery interval, using clinical records data including the date of birth and
the date on which the MRI scan was taken. The trained model had an elastic-
net regularisation with an L1 ratio of 0.22 (i.e. a combination of L1 and L2
regularisation at a ratio of 0.22:0.78 respectively) and a regularisation strength
of 0.0061.

3 Results

3.1 Model Fitting

Figure 2 depicts examples of the parameter maps obtained from the model fitting
techniques. The lower parameter map intensities in FGR compared to that in
the controls is indicative of hypoperfusion and low oxygen saturation levels in
these fetal organs. The T2 maps display pronounced differences in the signal
intensities of both cohorts. The most significant ROI and voxelwise parameters

Fig. 2. Green shaded area plots: Perfusion fraction layer in the model fitting maps
each taken from a single slice in the MRI scan. These correspond to ((a),(e)) placenta,
((b),(f)) liver, ((c),(g)) brain and ((d),(h)) lungs. Grey shaded area plots: T2

maps for placenta ((i), (iii)), and liver ((ii), (iv)) from a single slice. In all cases
top and bottom rows correspond to controls and FGR, respectively.

in identifying differences between controls and FGR fetuses were the perfusion
fraction, S0, pseudo-diffusion coefficient (D∗), and T2 (as given in Tables 1 and
2). The placenta and liver were determined to be the most influential organs in
diagnosing FGR.

The hierarchy of feature importances in Tables 1 and 2 specify that there
were no significant differences detectable in the fetal brain and lungs between
normal and FGR fetuses, especially compared to the placenta and liver, where
differences were significant. This suggests that the brain and lungs may benefit
from alternative analysis, focusing on certain cortical regions for the brain, and
incorporating alternative imaging modalities for the lungs, as model fitting MRI
analysis may not be the most appropriate technique for this fluid-filled organ.
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Table 1: Hierarchy of parameter feature importances of the ROI measurements.

Table 2: Hierarchy of parameter feature importances of the voxelwise measurements.

3.2 Texture Analysis

Texture analysis was conducted on the most significant parameter maps for each
organ, as determined by the t-tests. Results from the texture analysis were then
concatenated by considering the mean and max of each Haralick feature.

Evaluation of the resulting Haralick features corroborated the degree of effect
on the placenta in FGR, particularly using the Extended T2 IVIM map and
its mean variance. The brain was the least significantly different organ in this
analysis. The notches in the box plots delineate the extent of significant difference
in the medians of the investigated features by representing the confidence interval
of the metric. Greater mean variance in the signal from the Extended T2 IVIM
model of the healthy cohort (refer to Figure 3(a)), is indicative of increased
heterogeneity in FGR placentas. Max correlation of the liver perfusion fraction
in the controls in Figure 3(d) reflects larger intensity differences compared to
FGR. This is a significant feature to consider in the Standard IVIM model when
studying the liver in FGR, especially given that the notches do not overlap
between the cohorts.
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Fig. 3. Notched box plots of the most significant placental (pink) and liver (blue) Haral-
ick features: (a, b) mean variance and contrast of the perfusion fraction in the Extended
T2 IVIM model, (c) max contrast of the Standard IVIM model, and (d) max correlation
computed from the original scan.

3.3 Machine Learning

The classifier achieved a prediction accuracy of 100% in testing (refer to Table
3). Regarding the regressor, an RMSE of 0.02 weeks was achieved with the
training data (N=18), in contrast with the RMSE of 3.06 weeks obtained on the
test set (N=5). A generalisation error was evident, indicating a great degree of
overfitting of the regression model on the training samples.

4 Discussion

In this study, we combined model fitting techniques, texture analysis from multi-
contrast MRI modelling, and machine learning, to facilitate multi-fetal organ
analysis of FGR. This provided a more holistic approach to imaging this common
pregnancy condition. Differences were observed, particularly in the placenta and
fetal liver, emphasising the significant effect of FGR on these organs.
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Table 3: Classification Results.

Overall, the fitted model parameters reveal decreased perfusion fraction, T2,
and D∗ in the liver and placenta in FGR fetuses compared to the controls. These
differences are indicative of a reduced oxygen saturation and perfusion within
these organs, as well as abnormal capillary blood flow motion [8]. We did not
observe significant differences in the properties of fetal brains and lungs between
the FGR and control groups.

The machine learning analysis on these results supports the potential use
of these parametric biomarkers in measuring FGR and providing an estimate
of severity, including an indication of the likely GA at delivery. The classifier
achieved 100% accuracy on testing data, indicating the model features are pow-
erful indicators for FGR detection. But these results require prospective val-
idation in a larger study population due to the small test group size in this
proof-of-concept study. Moreover, a larger dataset would permit the transition
into more complex prediction models in future research.

The RMSE of 3.06 weeks for the regressor’s predictive performance encodes
a large window in terms of fetal development. This method must therefore be
refined before translation to a clinical environment. However, it may serve as a
guide on condition severity. In practice though, this tool would also be used in
conjunction with a wide range of information, including ultrasound data on fetal
size, and maternal and fetal Doppler analysis of vascular resistance, which we
have not included so far in this work.

The most influential Haralick features were extracted from the perfusion
fraction measurements, particularly computed from the Extended T2 IVIM and
Standard IVIM models. Another important parameter determined by the Har-
alick features was T2, attributed to its correlation with oxygen saturation (lower
T2 reflects a lower oxygen saturation [14]).

The placenta was established as the organ with most significant textural
differences between the FGR and control groups. Variance, contrast, entropy and
energy in placental perfusion fraction maps were the most significant textural
differences between FGR and controls. This may be related to differences in the
presence of maternal and fetal vascular malformation [15,16].

The second organ with greatest textural differences between both cohorts
was the liver, particularly the pseudo-diffusion coefficient (D∗) maps (contrast,
correlation, and energy), indicating spatial differences in the incoherent fetal
capillary blood motion in this organ. This may indicate an abnormal blood
motion in the liver compared to a healthy developing organ, affecting nutrient
supply to this organ and may be related to the role of the ductus venosus in
redistributing blood to the heart under the influence of increasing hypoxia [17].
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Energy was heavily influenced by the number of grey levels and was, therefore,
a significant feature for the placenta, lungs and brain, due to the presence of
similar intensity voxels within local regions. Correlation was affected by the
noise present in the image, which explains the notable correlation differences
found in the liver, being the organ with the lowest SNR.

Analysis on parameter correlations indicated that as the perfusion fraction in
the liver and placenta decreased, the more severely growth-restricted the FGR
fetuses were. This corroborated our initial hypotheses for selecting the fetal liver
and placenta as severely-affected organs in FGR, with SNR perhaps too low and
variability too high to observe differences in the fetal brain and lung. Despite
this, further work is needed to refine the analysis of the signals from these organs
to better study the impact of FGR.

5 Conclusion

This study demonstrated the potential of MRI to improve holistic assessment
of the fetus in FGR by assessing the vascular properties of highly-perfused fetal
organs, via a multi-compartmental model fitting approach and texture analy-
sis. The placenta and liver were prominent organs in identifying FGR fetuses,
with key parametric features indicating a reduced perfusion, oxygenation and
fetal capillary blood motion in these organs. Future work into multi-organ fe-
tal analysis will extend these techniques to other placental complications in a
larger-scale study.
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