27 research outputs found

    Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9

    Get PDF
    Abstract: Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer’s disease – outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Investigation into the health effects of reduced chymase function using predicted loss-of-function mutations in CMA1

    No full text
    Tissue remodelling and fibrosis which occur in response to injury play a central role in the development of many diseases. Chymase is a key enzyme believed to mediate these pathological processes. As such, chymase inhibitors have been under active development for the treatment of a number of conditions. To investigate the impact of reduced chymase function, we constructed a genetic score from two pLoF mutations in the gene encoding chymase and tested its association with diseases and biomarkers. Our study found no association between the genetically-predicted reduced chymase function score and heart failure, chronic kidney disease or other predefined conditions. We additionally found no association of the score with any physical measurements or biomarkers. Our results provide no evidence in support of chymase inhibition as a novel therapeutic strategy for the treatment or prevention of heart failure, chronic kidney disease or major cardiovascular events, as previously proposed

    Mendelian randomisation study of body composition and depression in people of East Asian ancestry highlights potential setting-specific causality

    Get PDF
    Abstract Background Extensive evidence links higher body mass index (BMI) to higher odds of depression in people of European ancestry. However, our understanding of the relationship across different settings and ancestries is limited. Here, we test the relationship between body composition and depression in people of East Asian ancestry. Methods Multiple Mendelian randomisation (MR) methods were used to test the relationship between (a) BMI and (b) waist-hip ratio (WHR) with depression. Firstly, we performed two-sample MR using genetic summary statistics from a recent genome-wide association study (GWAS) of depression (with 15,771 cases and 178,777 controls) in people of East Asian ancestry. We selected 838 single nucleotide polymorphisms (SNPs) correlated with BMI and 263 SNPs correlated with WHR as genetic instrumental variables to estimate the causal effect of BMI and WHR on depression using the inverse-variance weighted (IVW) method. We repeated these analyses stratifying by home location status: China versus UK or USA. Secondly, we performed one-sample MR in the China Kadoorie Biobank (CKB) in 100,377 participants. This allowed us to test the relationship separately in (a) males and females and (b) urban and rural dwellers. We also examined (c) the linearity of the BMI-depression relationship. Results Both MR analyses provided evidence that higher BMI was associated with lower odds of depression. For example, a genetically-instrumented 1-SD higher BMI in the CKB was associated with lower odds of depressive symptoms [OR: 0.77, 95% CI: 0.63, 0.95]. There was evidence of differences according to place of residence. Using the IVW method, higher BMI was associated with lower odds of depression in people of East Asian ancestry living in China but there was no evidence for an association in people of East Asian ancestry living in the USA or UK. Furthermore, higher genetic BMI was associated with differential effects in urban and rural dwellers within China. Conclusions This study provides the first MR evidence for an inverse relationship between BMI and depression in people of East Asian ancestry. This contrasts with previous findings in European populations and therefore the public health response to obesity and depression is likely to need to differ based on sociocultural factors for example, ancestry and place of residence. This highlights the importance of setting-specific causality when using genetic causal inference approaches and data from diverse populations to test hypotheses. This is especially important when the relationship tested is not purely biological and may involve sociocultural factors

    Adiposity, metabolomic biomarkers and risk of nonalcoholic fatty liver disease: a case-cohort study

    No full text
    Background Globally, the burden of obesity and associated nonalcoholic fatty liver disease (NAFLD) are rising, but little is known about the role that circulating metabolomic biomarkers play in mediating their association. Objectives We aimed to examine the observational and genetic associations of adiposity with metabolomic biomarkers and the observational associations of metabolomic biomarkers with incident NAFLD. Methods A case-subcohort study within the prospective China Kadoorie Biobank included 176 NAFLD cases and 180 subcohort individuals and measured 1208 metabolites in stored baseline plasma using a Metabolon assay. In the subcohort the observational and genetic associations of BMI with biomarkers were assessed using linear regression, with adjustment for multiple testing. Cox regression was used to estimate adjusted HRs for NAFLD associated with biomarkers. Results In observational analyses, BMI (kg/m2; mean: 23.9 in the subcohort) was associated with 199 metabolites at a 5% false discovery rate. The effects of genetically elevated BMI with specific metabolites were directionally consistent with the observational associations. Overall, 35 metabolites were associated with NAFLD risk, of which 15 were also associated with BMI, including glutamate (HR per 1-SD higher metabolite: 1.95; 95% CI: 1.48, 2.56), cysteine-glutathione disulfide (0.44; 0.31, 0.62), diaclyglycerol (C32:1) (1.71; 1.24, 2.35), behenoyl dihydrosphingomyelin (C40:0) (1.92; 1.42, 2.59), butyrylcarnitine (C4) (1.91; 1.38, 2.35), 2-hydroxybehenate (1.81; 1.34, 2.45), and 4-cholesten-3-one (1.79; 1.27, 2.54). The discriminatory performance of known risk factors was increased when 28 metabolites were also considered simultaneously in the model (weighted C-statistic: 0.84 to 0.90; P < 0.001). Conclusions Among relatively lean Chinese adults, a range of metabolomic biomarkers are associated with NAFLD risk and these biomarkers may lie on the pathway between adiposity and NAFLD

    Causal relevance of different blood pressure traits on risk of cardiovascular diseases: GWAS and Mendelian randomisation in 100,000 Chinese adults

    No full text
    Elevated blood pressure (BP) is major risk factor for cardiovascular diseases (CVD). Genome-wide association studies (GWAS) conducted predominantly in populations of European ancestry have identified >2,000 BP-associated loci, but other ancestries have been less well-studied. We conducted GWAS of systolic, diastolic, pulse, and mean arterial BP in 100,453 Chinese adults. We identified 128 non-overlapping loci associated with one or more BP traits, including 74 newly-reported associations. Despite strong genetic correlations between populations, we identified appreciably higher heritability and larger variant effect sizes in Chinese compared with European or Japanese ancestry populations. Using instruments derived from these GWAS, multivariable Mendelian randomisation demonstrated that BP traits contribute differently to the causal associations of BP with CVD. In particular, only pulse pressure was independently causally associated with carotid plaque. These findings reinforce the need for studies in diverse populations to understand the genetic determinants of BP traits and their roles in disease risk

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
    corecore