169 research outputs found

    New Algorithm for Determinant of Matrices Via Combinatorial Approach

    Get PDF
    Methods for finding determinants for matrices have long been explored and attracted interest of numerous researchers. However, most of the existing methods are tedious and require lengthy computation time particularly as the size of matrices becomes larger. Therefore, this study attempts to develop a new method which can reduce determinant computation time for matrices of any order. The developed method was based on permutations which were generated using starter sets. All starter sets for n elements were obtained by using combinatorial approach which then produced all n! distinct permutations. This starter sets strategy was proven to be more efficient if compared to other existing methods for listing all permutations such as lexicographic method. All permutations obtained were then used to construct a new method for finding determinants of n x n matrices. This study also produced a new theorem for finding determinant of n x n matrices and this theorem was proven to be equivalent to the existing theorem i.e Leibniz theorem. Besides that, several new theoretical works and mathematical properties for generating permutation and determining determinant were also constructed to verify the new developed method. The numerical results revealed that the determinant computation time for the new method was faster if compared to the existing methods. Testing of the new method on several special matrices such as Toeplitz, Hilbert and Hessenberg matrices was also carried out to prove the efficiency of the developed method. The numerical results also indicated that the new method outperformed Gauss and Gauss Jordon methods in term of computation time

    Thermal and electrical interaction of tantalum with a low temperature chemically active plasma flow

    Get PDF
    The paper deals with an experimental study of radiative heat transfer and charge transfer processes from the surface of tantalum plates under conditions of unsteady high-temperature heating and oxidation. It is shown that at plate temperatures of 1800 K, the heat flux may be as high as 400 kW/sq m. Heating is shown to stimulate the emissivity of tantalum and the temperature of the free electrons which surface, through a gas boundary layer, from the plasma onto the metal

    Toll-Like Receptor 1 Locus Re-examined in a Genome-Wide Association Study Update on Anti–Helicobacter pylori IgG Titers

    Get PDF
    Funding Information: Funding The Rotterdam Study I-II was supported by the Netherlands Organization of Scientific Research (NWO; 175.010.2005.011, 911-03-012), Research Institute for Diseases in the Elderly (RIDE; 014-93-015), Genomics Initiative/NWO (project no. 050-060-810), Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), Ministry of Education, Culture, and Science and Ministry for Health, Welfare, and Sports, European Commission, and the Municipality of Rotterdam. GenerationR was supported by Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, ZonMw (907.00303, 916.10159), NWO, and the Ministry for Health, Welfare and Sports. The Study of Health in Pomerania (SHIP) and SHIP-TREND were supported by Deutsche Krebshilfe/Dr Mildred-Scheel-Stiftung (109102), Deutsche Forschungsgemeinschaft (DFG GRK840-D2/E3/E4, MA 4115/1-2/3), Federal Ministry of Education and Research (BMBF GANI-MED 03IS2061A and BMBF 0314107, 01ZZ9603, 01ZZ0103, 01ZZ0403, 03ZIK012), the European Union (EU-FP-7-EPCTM and EU-FP7-REGPOT-2010-1), AstraZeneca (unrestricted grant), the Federal Ministry of Education and Research, Siemens Healthcare, the Federal State of Mecklenburg–West Pomerania, and the University of Greifswald. The Framingham Heart Study was supported by National Institutes of Health grants N01-HC-25195, HHSN268201500001I, and 75N92019D00031 (to Boston University) and the Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI). The Multi-Ethnic Study of Atherosclerosis (MESA) and the MESA SHARe projects were supported by the NHLBI (75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Funding for SHARe genotyping was provided by NHLBI grant N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, CA) and the Broad Institute of Harvard and MIT (Boston, MA) using the Affymetrix Genome-Wide Human SNP Array 6.0. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The Epidemiological Investigations on Chances of Preventing Recognizing Early and Optimally Treating Chronic Diseases in an Elderly Population were supported by the State Ministry of Science, Research and Arts, Baden-Württemberg, Federal Ministry of Education and Research, and Federal Ministry of Family Affairs, Senior Citizens, Women and Youth. LATVIA was supported by the European Regional Development Fund (ERDF; 009/0220/1DP/1.1.1.2.0/09/APIA/VIAA/016), National Program for Research in Latvia, Ministry of Health (6-1396-2016), and Fundamental and Applied Research Projects Program in Latvia (project no. lzp-2018/1-0135). Funding Information: Conceptualization: Linda Broer, Manon C.W. Spaander, Fabian Frost, Stefan Weiss, Georg Homuth, Henry Völzke, Markus M. Lerch, Ben Schöttker, Hermann Brenner, Daniel Levy, Shih-Jen Hwang, Alexis C. Wood, Stephen S. Rich, Jerome I. Rotter, Kent D. Taylor, Russell P. Tracy, Edmond K. Kabagambe, Marcis Leja, Janis Klovins, Raitis Peculis, Dace Rudzite, Liene Nikitina-Zake, Girts Skenders, Vita Rovite, André Uitterlinden, Ernst J. Kuipers, Maikel P. Peppelenbosch, and additional members of Rotterdam Study I-II, GenerationR, Study of Health in Pomerania, Framingham Heart Study, Multi-Ethnic Study of Atherosclerosis, Epidemiological Investigations on Chances of Preventing Recognizing Early and Optimally Treating Chronic Diseases in an Elderly Population, and LATVIA cohorts not directly involved in this manuscript. Methodology: all authors. Investigation: all authors. Formal analysis of discovery: Linda Broer, Fabian Frost, Stefan Weiss, Georg Homuth, Henry Völzke, Markus M. Lerch, Daniel Levy, Shih-Jen Hwang, Alexis C. Wood, Stephen S. Rich, Jerome I. Rotter, Kent D. Taylor, Russell P. Tracy, and Edmond K. Kabagambe. Formal analysis of replication: Yan Zhang, Hannah Stocker, Hermann Brenner, Marcis Leja, Janis Klovins, and Raitis Peculis. Formal analysis of meta-analysis: Linda Broer. Project administration: Suk Yee Lam and Gwenny M. Fuhler. Resources: Fabian Frost, Stefan Weiss, Georg Homuth, Henry Völzke, Markus M. Lerch, Hermann Brenner, Daniel Levy, Shih-Jen Hwang, Alexis C. Wood, Stephen S. Rich, Jerome I. Rotter, Kent D. Taylor, Russell P. Tracy, Edmond K. Kabagambe, Marcis Leja, Janis Klovins, Dace Rudzite, Liene Nikitina-Zake, Girts Skenders, Vita Rovite, Ernst J. Kuipers, and Maikel P. Peppelenbosch. Supervision: Manon C.W. Spaander, Fabian Frost, Stefan Weiss, Georg Homuth, Henry Völzke, Markus M. Lerch, Hermann Brenner, Daniel Levy, Shih-Jen Hwang, Alexis C. Wood, Stephen S. Rich, Jerome I. Rotter, Kent D. Taylor, Russell P. Tracy, Edmond K. Kabagambe, Marcis Leja, Janis Klovins, Gwenny M. Fuhler, Maikel P. Peppelenbosch, and André Uitterlinden. Visualization: Suk Yee Lam, Michiel C. Mommersteeg, Bingting Yu, Linda Broer, and Gwenny M. Fuhler. Writing—original draft: Suk Yee Lam, Michiel C. Mommersteeg, and Gwenny M. Fuhler. Writing—reviewing and editing: all authors. Publisher Copyright: © 2022 The Author(s)Background & Aims: A genome-wide significant association between anti–Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. Methods: The dichotomous GWAS (25% individuals exhibiting highest anti–H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori–eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. Results: The association of the TLR1/6/10 locus with anti–H pylori IgG titers (rs12233670; β = −0.267 ± SE 0.034; P = 4.42 × 10−15) presented with high heterogeneity and failed replication. Anti–H pylori IgG titers declined within 2–4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. Conclusions: The association between anti–H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti–H pylori IgG titers on therapy, clearance, and antibody decay. H pylori–mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.publishersversionPeer reviewe

    Polymorphisms on PAI-1 and ACE genes in association with fibrinolytic bleeding after on-pump cardiac surgery

    Get PDF
    Publisher Copyright: © 2015 Ozolina et al.Background: Carriers of plasminogen activator inhibitor -1 (PAI-1) -675 genotype 5G/5G may be associated with lower preoperative PAI-1 plasma levels and higher blood loss after heart surgery using cardiopulmonary bypass (CPB). We speculate if polymorphisms of PAI-1 -844 A/G and angiotensin converting enzyme (ACE) intron 16 I/D also might promote fibrinolysis and increase postoperative bleeding. Methods: We assessed PAI-1 -844 A/G, and ACE intron 16 I/D polymorphisms by polymerase chain reaction technique and direct sequencing of genomic DNA from 83 open heart surgery patients that we have presented earlier. As primary outcome, accumulated chest tube drainage (CTD) at 4 and 24 h were analyzed for association with genetic polymorphisms. As secondary outcome, differences in plasma levels of PAI-1, t-PA/PAI-1 complex and D-dimer were determined for each polymorphism. SPSS® was used for statistical evaluation. Results: The lowest preoperative PAI-1 plasma levels were associated with PAI-1 -844 genotype G/G, and higher CTD, as compared with genotype A/A at 4 and 24 h after surgery. Correspondingly, 4 h after the surgery CTD was higher in carriers of ACE intron 16 genotype I/I, as compared with genotype D/D. PAI-1 plasma levels and t-PA/PAI-1 complex reached nadir in carriers of ACE intron 16 genotype I/I, in whom we also noticed the highest D-dimer levels immediately after surgery. Notably, carriers of PAI-1 -844 genotype G/G displayed higher D-dimer levels at 24 h after surgery as compared with those of genotype A/G. Conclusions: Increased postoperative blood loss secondary to enhanced fibrinolysis was associated with carriers of PAI-1 -844 G/G and ACE Intron 16 I/I, suggesting that these genotypes might predict increased postoperative blood loss after cardiac surgery using CPB.publishersversionPeer reviewe

    Activating KIR and HLA Bw4 Ligands Are Associated to Decreased Susceptibility to Pemphigus Foliaceus, an Autoimmune Blistering Skin Disease

    Get PDF
    The KIR genes and their HLA class I ligands have thus far not been investigated in pemphigus foliaceus (PF) and related autoimmune diseases, such as pemphigus vulgaris. We genotyped 233 patients and 204 controls for KIR by PCR-SSP. HLA typing was performed by LABType SSO reagent kits. We estimated the odds ratio, 95% confidence interval and performed logistic regression analyses to test the hypothesis that KIR genes and their known ligands influence susceptibility to PF. We found significant negative association between activating genes and PF. The activating KIR genes may have an overlapping effect in the PF susceptibility and the presence of more than three activating genes was protective (OR = 0.49, p = 0.003). A strong protective association was found for higher ratios activating/inhibitory KIR (OR = 0.44, p = 0.001). KIR3DS1 and HLA-Bw4 were negatively associated to PF either isolated or combined, but higher significance was found for the presence of both together (OR = 0.34, p<10−3) suggesting that the activating function is the major factor to interfere in the PF pathogenesis. HLA-Bw4 (80I and 80T) was decreased in patients. There is evidence that HLA-Bw4(80T) may also be important as KIR3DS1 ligand, being the association of this pair (OR = 0.07, p = 0.001) stronger than KIR3DS1-Bw4(80I) (OR = 0.31, p = 0.002). Higher levels of activating KIR signals appeared protective to PF. The activating KIR genes have been commonly reported to increase the risk for autoimmunity, but particularities of endemic PF, like the well documented influence the environmental exposure in the pathogenesis of this disease, may be the reason why activated NK cells probably protect against pemphigus foliaceus

    Regulation of immune cell function and differentiation by the NKG2D receptor

    Get PDF
    NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF
    corecore