315 research outputs found

    Molecular genetic studies of neurodegenerative disease.

    Get PDF
    Large scale genetic studies such as genome-wide association studies (GWAS) in Parkinson's disease (PD) have revealed genetic susceptibility factors and continue to offer new insights both into the genetics of sporadic disease and its pathogenesis, with the potential for identification of an at-risk population and novel therapeutic targets. However, the methodology importantly requires larger data sets for replication of novel findings

    Anomalous high-magnetic field electronic state of the nematic superconductors FeSe₁₋ₓSₓ

    Get PDF
    Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for superconductivity. Here, we investigate the normal transport of superconducting FeSe1−xSx across a nematic phase transition using high-magnetic fields up to 69 T to establish the temperature and field dependencies. We find that the nematic state is dominated by a linear resistivity at low temperatures that evolves towards Fermi-liquid behavior, depending on the composition x and the impurity level. Near the nematic end point, we find an extended temperature regime with ∼T1.5 resistivity, different from the behavior found near an antiferromagnetic critical point. The variation of the resistivity exponent with temperature reflects the importance of the nematoelastic coupling that can also suppress divergent critical fluctuations at the nematic end point. The transverse magnetoresistance inside the nematic phase has a ∼H1.55 dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, influenced by both changes in the electronic structure and the scattering with the lattice and spin fluctuations

    Temperature drives variation in flying insect biomass across a German malaise trap network

    Get PDF
    1. Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. 2. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. 3. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long-term averages. 4. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. 5. Standardised, large-scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate-adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long-term averages. Our results highlight the importance of local adaptation in climate change-driven impacts on insect communities

    Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabis therapy has been considered an effective treatment for spasticity, although clinical reports of symptom reduction in multiple sclerosis (MS) describe mixed outcomes. Recently introduced therapies of combined Δ<sup>9</sup>-tetrahydrocannabinol (THC) and cannabidiol (CBD) extracts have potential for symptom relief with the possibility of reducing intoxication and other side effects. Although several past reviews have suggested that cannabinoid therapy provides a therapeutic benefit for symptoms of MS, none have presented a methodical investigation of newer cannabinoid treatments in MS-related spasticity. The purpose of the present review was to systematically evaluate the effectiveness of combined THC and CBD extracts on MS-related spasticity in order to increase understanding of the treatment's potential effectiveness, safety and limitations.</p> <p>Methods</p> <p>We reviewed MEDLINE/PubMed, Ovid, and CENTRAL electronic databases for relevant studies using randomized controlled trials. Studies were included only if a combination of THC and CBD extracts was used, and if pre- and post-treatment assessments of spasticity were reported.</p> <p>Results</p> <p>Six studies were systematically reviewed for treatment dosage and duration, objective and subjective measures of spasticity, and reports of adverse events. Although there was variation in the outcome measures reported in these studies, a trend of reduced spasticity in treated patients was noted. Adverse events were reported in each study, however combined TCH and CBD extracts were generally considered to be well-tolerated.</p> <p>Conclusion</p> <p>We found evidence that combined THC and CBD extracts may provide therapeutic benefit for MS spasticity symptoms. Although some objective measures of spasticity noted improvement trends, there were no changes found to be significant in post-treatment assessments. However, subjective assessment of symptom relief did often show significant improvement post-treatment. Differences in assessment measures, reports of adverse events, and dosage levels are discussed.</p

    Development of a web-based insulin decision aid for the elderly: usability barriers and guidelines

    Get PDF
    In recent years, researchers have attempted to shift patient decision aids (PDAs) from paper-based to web-based to increase its accessibility. Insulin decision aids help diabetes patients, most of whom are elderly to make an informed decision to start insulin. However, the lack of usability guidelines applicable for such target group causes developers to struggle to answer the challenging question ‘How can such web service be made usable, and, ultimately, acceptable and accessible for elderly patients?’. Hence, the purpose of this study is to identify the common usability requirements that may facilitate good practices to empower elderly diabetes patients in utilizing a web-based insulin decision aid for their benefit. We set out an approach to use prototyping and retrospective think-aloud techniques to explore web usability barriers that elderly patients may encounter when using an insulin decision aid web site and use the feedback for improving the prototype. Usability requirements were captured iteratively through scoping, brainstorming, prototype, testing and evaluating. The study suggests that the insights from experts and users are equally important to assure the validity of the identified usability guidelines; they reflect the accessibility needs of the aging community while complementing the key requirements of an insulin decision aid. The study contributes to recommend web usability guidelines backed by a series of expert and user evaluations which could be a proactive resource to improve usability, acceptability and accessibility of online insulin decision aids for elderly with diabetes

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    The MATCH Corpus: A Corpus of Older and Younger Users' Interactions With Spoken Dialogue Systems.

    Get PDF
    We present the MATCH corpus, a unique data set of 447 dialogues in which 26 older and 24 younger adults interact with nine different spoken dialogue systems. The systems varied in the number of options presented and the confirmation strategy used. The corpus also contains information about the users’ cognitive abilities and detailed usability assessments of each dialogue system. The corpus, which was collected using a Wizard-of-Oz methodology, has been fully transcribed and annotated with dialogue acts and ‘‘Information State Update’’ (ISU) representations of dialogue context. Dialogue act and ISU annotations were performed semi-automatically. In addition to describing the corpus collection and annotation, we present a quantitative analysis of the interaction behaviour of older and younger users and discuss further applications of the corpus. We expect that the corpus will provide a key resource for modelling older people’s interaction with spoken dialogue systems

    Season of Sampling and Season of Birth Influence Serotonin Metabolite Levels in Human Cerebrospinal Fluid

    Get PDF
    BACKGROUND: Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF) monoamine (MA) turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA), dopamine (homovanillic acid, HVA) and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG) were measured using high performance liquid chromatography (HPLC). Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75). The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050), with predicted maximum (PC(max)) and minimum (PC(min)) concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PC(max) = 172 and PC(min) = 126). The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. CONCLUSION: In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall

    Complement in the pathogenesis of Alzheimer's disease

    Get PDF
    The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer’s disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer’s disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain
    corecore