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ABSTRACT. 1. Among the many concerns for biodiversity in the Anthropocene,
recent reports of flying insect loss are particularly alarming, given their importance as
pollinators, pest control agents, and as a food source. Few insect monitoring programmes
cover the large spatial scales required to provide more generalizable estimates of insect
responses to global change drivers.
2. We ask how climate and surrounding habitat affect flying insect biomass using data

from the first year of a new monitoring network at 84 locations across Germany compris-
ing a spatial gradient of land cover types from protected to urban and crop areas.
3. Flying insect biomass increased linearly with temperature across Germany. How-

ever, the effect of temperature on flying insect biomass flipped to negative in the hot
months of June and July when local temperatures most exceeded long-term averages.
4. Land cover explained little variation in insect biomass, but biomass was lowest in

forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The
date of peak biomass was primarily driven by surrounding land cover, with grasslands
especially having earlier insect biomass phenologies.
5. Standardised, large-scale monitoring provides key insights into the underlying pro-

cesses of insect decline and is pivotal for the development of climate-adapted strategies
to promote insect diversity. In a temperate climate region, we find that the positive effects
of temperature on flying insect biomass diminish in a German summer at locations where
temperatures most exceeded long-term averages. Our results highlight the importance of
local adaptation in climate change-driven impacts on insect communities.

Key words. climate change, ecological gradients, insect monitoring, land cover,
LTER, malaise trap, pollinator, thermal performance.

Introduction

Insects constitute a large proportion of terrestrial biodiversity and
deliver essential ecosystem services such as pollination of themajor-
ity of wild plants and 75% of crop species (Losey &
Vaughan, 2006; Vanbergen & Insect Pollinators Initiative, 2013).
Insect biomass is a key constituent of energy flows in many
food webs (Stepanian et al., 2020), a measure of whole insect
communities (Shortall et al., 2009) and an indicator of ecosys-
tem function (Dangles et al., 2011; Barnes et al., 2016). Cli-
mate change and anthropogenically altered land cover are
likely drivers of insect declines, but their effects on insect bio-
mass are still poorly characterised (Habel et al., 2019). Amidst
burgeoning evidence of widespread insect declines, standar-
dised, and large-scale insect monitoring is needed to improve
estimates of trends, and identify drivers (Didham et al., 2020;
Wagner, 2020).
Climate change is geographically pervasive (Wilson &

Fox, 2020) and may explain insect decline in natural areas
(e.g. Janzen & Hallwachs, 2019; Welti et al., 2020b). Some
insect taxa are benefiting from rising temperatures, which can
increase local populations (Baker et al., 2021) and range sizes
(Termaat et al., 2019). However, as temperatures continue to rise
and increase more rapidly, negative impacts on insect productiv-
ity are expected (Warren et al., 2018). This relationship is pre-
dicted by thermal performance theory, which hypothesises that
insect fitness, as measured by biomass or other performance indi-
cators, will have a unimodal response to temperature
(Kingsolver & Huey, 2008; Sinclair et al., 2016).

Responses of precipitation regimes to climate change vary
with region, but forecasts generally suggest increased frequency
of both heavy precipitation events and droughts (Myhre
et al., 2019). Drought can reduce nectar and pollen resources
used by flower-visiting insects and change insect activity
through reducing flower sizes and altering plant volatiles
(Burkle & Runyon, 2016; Phillips et al., 2018; Rering
et al., 2020). However, high precipitation increases insect mor-
tality and shortens the period of time insects are flying
(Totland, 1994). Indirect effects of precipitation on flying insects
mediated by plants (e.g. altering plant phenology or nutrition)
are context-dependent, but increasing rainfall in average to wet
climates is often detrimental (Lawson & Rands, 2019).

Changing land cover due to human activities has been
described as the largest threat to insect biodiversity
(Wagner, 2020), with wide-ranging impacts from loss of
resources and nesting locations at local scales, to fragmented
habitats at larger scales (Newbold et al., 2020). Agricultural
areas currently cover around 11% of Earth’s land, mostly consti-
tuted by intensively managed monocultures which support few
insect species (Raven & Wagner, 2021). While well-managed
urban green spaces can support insect communities
(Theodorou et al., 2020), both insect diversity (Fenoglio
et al., 2020; Piano et al., 2020), and biomass (Macgregor
et al., 2019; Svenningsen et al., 2020) have been shown to
decline with urbanisation in many areas. Heavily human modi-
fied landscapes also come with associated pressures, including
eutrophication, ploughing, and pesticide use with agricultural
intensification (Goulson et al., 2018; Carvalheiro et al., 2020),

© 2021 TheAuthors. Insect Conservation andDiversity published by JohnWiley& Sons Ltd on behalf of Royal Entomological Society.,
Insect Conservation andDiversity, 15, 168–180

Insect biomass over ecological gradients 169



and light pollution from urban environments (Owens
et al., 2020).

Here, we ask how climate and land cover affect flying insect
biomass across the growing season of 2019 in 84 locations ranging
over seven degrees of latitude during the first year ofmonitoring of
the German Malaise Trap Program. We hypothesise (H1) the
effect of temperature on insect biomass will (i) be unimodal and
(ii) decline at locationswhere temperatures exceed long-term aver-
ages. We hypothesise (H2) that flying insect biomass will decline
with increasing precipitation due to reduced flying activity.
Finally, we predict (H3)flying insect biomasswill be lower in land
cover types with larger anthropogenic impacts such as urban and
agricultural areas. We additionally conducted an exploratory anal-
ysis to test whether the date of peak biomass varied with climate,
land cover type, or elevation and to examine whether the identified
significant environmental drivers of insect biomass were the result
of co-variation with biomass phenology (e.g. if positive predictors
resulted in capturing a phenological interval with higher biomass).
The broad spatial coverage of our study allows us to examine
drivers of flying insect biomass using a macroecological gradients
approach (Pianka, 1966; Peters et al., 2019).

Methods

German Malaise Trap Program

The German Malaise Trap Program currently comprises 31
German Long-Term Ecological Research (LTER-D) and National
Natural Landscape sites (https://www.ufz.de/lter-d/index.php?de=
46285). The programmewas established in early 2019 to investigate
long-term trends in flying insect biomass and species composition
using DNA metabarcoding. One to six locations were selected at
each site, each with one malaise trap installed. All traps measured
1.16 m2 on each side (Supporting Information Fig. S1). We exam-
ine here the 2019 biomass data retrieved from 25 of the 31 sites;
the remaining sites began sampling in 2020 and are not analysed
in this study. To fill spatial gaps, we included eight sites in Bavaria
from an additional project using the samemalaise trap type andmea-
surement methods. Overall, this study includes 1039 samples from
84 locations and 33 participating sites distributed across Germany
(Fig. 1; Supporting Information Table S1) and a range of habitats
(see Land cover below). Traps ran from early April to late October
2019 and were usually emptied every 2 weeks (14.03 days � 0.06

Fig 1. Malaise trap locations where samples were collected in 2019 are identified by the dominant land cover in the surrounding 1 km. Points coded as
stars indicate trap locations at which sampling began in 2020 and are incorporated to show the full extent of the current programme but are not included in
the analyses. Overlapping locations were jittered longitudinally to improve visualisation.
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SE; ranging 7–29 days). Insects were captured in 1 litre bottles filled
with ca. 650 ml of an 80% alcohol solution. Some traps ran for
shorter durations, e.g., due to snowfall, and several samples were
lost due to animal or wind damage. By sampling across all times
of day for the duration of the growing season, these data represent
a wide variety of flying insect taxa across a large range of seasonal
and diurnal flight periodicity.

Laboratory procedures

Insect biomass was wet weighed to preserve samples for
future identification. Alcohol was filtered in a stainless steel
sieve (0.8 mm mesh width) following the procedure in the study
by Hallmann et al. (2017), with one modification: instead of
waiting until alcohol drops occurred >10 s apart, samples were
filtered for a standard 5 min prior to weighing to the near-
est 0.01 g.

Climate

Monthly means of maximum and minimum temperatures, and
monthly cumulative precipitation were extracted from each loca-
tion from 2019 using the Terraclimate dataset (Abatzoglou
et al., 2018) and from 1960 to 2018 using the CRU-TS 4.03 data-
set (Harris et al., 2014) downscaled with WorldClim 2.1 (Fick &
Hijmans, 2017). Data from both time periods (2019 and 1960–
2018) were not available from either dataset alone. Both datasets
have spatial resolutions of 2.5 arc minutes (~21 km2) with our 84
trap locations occurring in 72 separate climate grid cells. While
daily climate data are available from the German weather service
(DWD), matching of trap locations to the nearest weather sta-
tions resulted in only 33 unique matches of the 84 locations to
weather stations. We therefore opted to use monthly climate data
from Terraclimate and WorldClim as these data optimised the
spatial resolution of available datasets and as biomass data were
not collected daily but in 2 week periods.
Monthly minimum and maximum temperatures in 2019 were

highly correlated (R2 = 0.97) and were higher than 1960–2018

averages, especially during summer months (Fig. 2a). Therefore,
we used only maximum temperatures in our analyses (henceforth
referred to as temperature). Annual precipitation was slightly lower
in 2019 (784 mm � 32 SE) relative to the 1960–2018 average
(842 mm � 32 SE), with summer months comprising the driest
period, but high variation existed across months (Fig. 2b). No latitu-
dinal temperature gradient existed across our sampling locations
either in 2019 (Supporting Information Fig. S2a) nor across long-
term averages (Supporting Information Fig. S2b), likely due to a
negative correlation between elevation and latitude (Supporting
Information Fig. S3). However, southern latitudes in 2019 experi-
enced temperatures exceeding long-term averages to a greater
degree than northern latitudes (Supporting Information Fig. S2c)
and had higher precipitation (Supporting Information Fig. S2d).

Land cover

Land cover categories in a 1-km buffer around each location
were extracted using the 2018 CORINE dataset (European
Union, Copernicus Land Monitoring Service, 2018). Previous
work suggests that at scales larger than 1-km, insects have
weaker responses to land cover buffers (Seibold et al., 2019).
The 30 CORINE land cover types were pooled into eight catego-
ries: urban (7.5% of surrounding land cover), intensive agricul-
ture (2.3%), non-irrigated agriculture (15.9%), pasture/orchard
(12.7%), forest (44.7%), grassland/shrubland (12.1%), freshwa-
ter (3.9%), and saltwater (0.9%). Pasture is defined as areas
heavily used for fodder production, while grasslands are defined
as areas with little-to-moderate human influence (for more
details on all land cover classifications, see: https://land.
copernicus.eu/user-corner/technical-library/corine-land-cover-
nomenclature-guidelines/html). To reduce variance inflation due
to land cover categories being percentages, we removed land
cover categories from our model testing the effects of land cover
on insect biomass starting with the least common until the vari-
ance inflation factor (VIF) was <10 (Montgomery et al., 2021);
this removed the land cover types of freshwater, intensive agri-
culture, and saltwater, resulting in five categories of land cover

Fig 2. Comparison of climate at the 84 trap locations between 2019 and the long-term average (1960–2018) including average maximum monthly tem-
peratures (tmax) and minimummonthly temperatures (tmin) in �C � standard error (a) and cumulative monthly precipitation in mm � standard error (b).
Period of the year in which malaise trap sampling occurred is shaded in grey.
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considered in analyses. VIF was calculated using the R package
‘car’ v. 3.0-11 (Fox & Weisberg, 2019).

Elevation

Elevation was extracted using the Digital Terrain Model with
200-m grid widths (DGM200) from the German Federal Agency
for Cartography and Geodesy (GeoBasis-DE/BKG, 2013). Ele-
vation varied from 0 m above sea level (asl) on a barrier island
in northeast Germany to 1413 m asl in the German Alps.

All GIS data extraction was conducted in QGIS ver. 3.14
(QGIS.org, 2020).

Statistical analyses

To test the hypotheses that insect biomass would have a unim-
odal relationship with temperature (H1a), decline with increas-
ing precipitation (H2), and decline with urban and agricultural
areas (H3), we used an Akaike information criterion corrected
for small sample sizes (AICc) framework (Burnham &
Anderson, 2003); first building an a priori full model, comparing
AICc of models with and without spatial autocorrelation to test
for spatial non-independence, and then comparing all possible
reduced models of fixed effects using the dredge function in
the R package ‘MuMIn’ v. 1.43.17 (Barto�n, 2020).

The full model contained the response variable of sample
biomass in mg day�1 from all 84 locations and was log10
(x + 1) transformed to correct for a log-skewed distribution.
Fixed predictors of temperature (H1a), precipitation (H2), %
cover of the five most dominant land cover categories (H3), ele-
vation, the second degree polynomial of sampling period (cov-
ariates), and a random effect of trap location to account for
repeated observations. We tested five models fitting spatial
autocorrelation (exponential, Gaussian, linear, rational qua-
dratic, and spherical correlation) and compared their AICc

values with a model without a spatial correlation argument
(Zuur et al., 2009). The model with the lowest AICc was the
model without a spatial autocorrelation term; thus we pro-
ceeded with this model when selecting for fixed effects. Models
with a ΔAICc < 2 are considered parsimonious (Burnham &
Anderson, 2003) and reported.

Mixed models were fitted using the R package ‘nlme’
v. 3.1-153 (Pinheiro et al., 2021). All analyses were conducted
in R ver. 4.1.1 (R Core Team, 2021). We included the second
degree polynomial of the sampling period to capture the season
pattern of biomass. Sampling period refers to the half-month
period most overlapping trap sampling days and is numerical
(e.g. first half of April = sampling period 1). Temperature and
precipitation predictors correspond to the month in which the
majority of sampling days occurred. Temperature was first
included as a second-order polynomial; however, while all top
models included the fixed effect of this term, the second-order
polynomial term of temperature was never significant; thus, we
replaced this parameter with a linear temperature term. We ini-
tially intended to include the 2019 deviation in monthly maxi-
mum temperatures from long-term averages (Δ temperature) as

a driver, in addition to a temperature and precipitation interaction
to test drought effects, but these terms caused variance inflation
with sampling period and thus were excluded. In order to adjust
variances to be within the same orders of magnitude, precipita-
tion and elevation were scaled by dividing by 100. The full
model was specified as:

log10(biomass) ~ temperature + I
(precipitation/100) + I(elevation/100) +
forest + grassland/shrubland + non-irrigated
crop + pasture/orchard + urban + poly
(period,2), random=~1|location

We additionally examined our hypothesis that flying insect
biomass will decline when local temperatures exceed long-term
averages (H1b) and examine how responses varied across sam-
pling months. We were prohibited from includingΔ temperature
in the mixed model due to high variance inflation with sampling
period. With the aim of reducing complexity due to variation in
timing of sample collection across locations and eliminating
repeated sampling within a location per month, we calculated
an average value of biomass (mg day�1) per location and month
by computing a monthly weighted average of insect biomass.
Our calculation assumes traps caught the same amount of bio-
mass each day within a sample and allocates sample biomass
to each month weighed by the number of sampling days
(e.g. for a trap run with 1 day in month A and 13 days in month
B we assumed 1/14th of the biomass was collected in month A
and 13/14ths was in month B).With these assumptions, the aver-
age biomass Bij (mg day�1) of location i in month j is a weighted
average of the n samples occurring in the month according to the
following formula:

Bi,j ¼
Pn

k¼1
bijk�Dk,j � Dk

� �

Pn

k¼1
Dk,j

ð1Þ

where bijk is the total biomass (mg) at location i occurring at least
partially in month j for a sample k, n is the total number of sam-
ples occurring at least partially in month j for location i,Dk,j is the
number of sampling days occurring in month j for a given sample
k, and Dk is the total number of sampling days for a given
sample k.

For each month (April–October), we then tested for an interac-
tion between monthly temperature and Δ temperature (2019
temperature minus the long-term average temperature) for the
corresponding location/month on log10 transformed Bi,j. We
visualised the results using the R package ‘effects’ v. 4.2-0
(Fox & Weisberg, 2019).

To visualise changes in flying insect biomass with land cover,
we plotted biomass day�1 over median day of sampling for loca-
tions corresponding to each dominant land cover. Dominant land
cover refers to the land cover type with the highest percentage in
the 1 km buffer surrounding each location. The AICc analysis is
our primary test of differences in biomass between land cover
types and uses land cover percentages rather than dominant land
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covers. However, we additionally used Welch’s t-tests to iden-
tify significant differences between log10(x + 1) transformed
Bi,j for all locations, and locations corresponding to each domi-
nant land cover within each month. No locations had surround-
ings dominated by intensive agriculture. Locations dominated
by saltwater (n = 1) and freshwater (n = 2) were excluded due
to low replication.

Peak biomass

To calculate the day of the year of peak biomass, we fit splines on
the relationship between biomass (mg day�1) of each sample and the
median day of the year of each sample for each location using the
‘smooth.spline’ base function in programme R. We then extracted
the day of the year when the maximum value of the fitted spline
occurred (see Supporting Information Fig. S4 for an example). We
excluded locations where the maximum extracted value occurred at
either end of the sampling interval, assuming these sampling loca-
tions may not have captured the peak biomass date; in total, we were
able to calculate peak biomass date for 73 locations. We then fol-
lowed the same AICc model selection procedure as was used for
determining drivers of insect biomass to conduct model selection
on drivers of peak biomass. The full a priori model was a linear
regression which included the response variable of peak biomass
date, and the explanatory variables of the averagemonthly 2019 tem-
perature from the beginning of the year (January) to the last main
sampling month (October), the averageΔ temperature from January
to October, the cumulative precipitation from January to October,
elevation, and the % cover of the five most dominant land cover cat-
egories. Precipitation and elevation were scaled by dividing by 100.

Results

Mean flying insect biomass averaged 2329 � 79 SE mg day�1

and ranged from near zero to 17 543 mg day�1. Biomass
increased from 734 � 98 SE mg day�1 in early April, to a peak
of 5356 � 401 SE mg day�1 in late June, declining to
568 � 111 SE mg day�1 in late October. AICc model compari-
son selected two competing top models (Supporting
Information Table S2) with both containing temperature, percent
forest cover, and sampling period, and the second model addi-
tionally containing elevation as predictors of flying insect bio-
mass (Table 1). The two top models explained 43–45% of the
variance in flying insect biomass without location information
(marginal R2) and 73% of flying insect biomass was accounted
for when including location identity as a random effect (condi-
tional R2; Supporting Information Table S2).

Climate

Flying insect biomass increasedwith 2019 temperature (Table 1
(a); Supporting Information Fig. S5a) and declinedwith increasing
elevation (Table 1(b); Supporting Information Fig. S5b). There
was a significant interaction between temperature and Δ tempera-
ture in the mid-season sampling months of June and July. In these

2 months, temperature had a positive effect on flying insect bio-
mass at locations with low Δ temperatures, shifting to a negative
effect of temperature on flying insect biomass at locations with
high Δ temperatures (Fig. 3; Supporting Information Table S3).
Significant interactions between temperature and Δ temperatures
were not found in other sampling months (Fig. 3; Supporting
Information Table S3). The slope of the effect of temperature on
flying insect biomass was steeper with lower Δ temperatures in
April, August, and September, though not significantly. This pat-
tern flipped in May and October where the slope of the effect of
temperature on flying insect biomass was steeper with higher Δ
temperatures, likely due to colder temperatures in these months,
though again the interaction was not significant (Fig. 3; Support-
ing Information Table S3).

Land cover

Flying insect biomass declined with % forest in the 1 km
buffer surrounding each trap location (Table 1). No other land
cover categories appeared as drivers of flying insect biomass.
Categorising locations by dominant land cover suggested
grassland/shrublands had the highest biomass in the mid
growing season (June/July; Fig. 4c), while non-irrigated
cropland supported above-average biomass at either end of
the growing season (May and September; Fig. 4e). Higher
biomass in urban-dominated locations (April and July–
September; Fig. 4f) may be due to urban-dominated locations
being in southern Germany (Fig. 1) which tended to be
slightly warmer (Supporting Information Fig. S2).

Table 1. Top AICc models. AICc model selection for predictors of fly-
ing insect biomass resulted in two top models (a and b).

Est SE df t-value P

(a) Model 1
Intercept 2.278 0.122 952 18.73 <0.001
%forest �0.319 0.109 82 �2.93 0.004
poly(period,1) �4.124 0.329 952 �12.52 <0.001
poly(period,2) �4.402 0.707 952 �6.23 <0.001
tmax 0.047 0.005 952 9.53 <0.001

(b) Model 2
Intercept 2.211 0.123 952 18.04 <0.001
elevation 0.036 0.013 81 2.72 0.008
%forest �0.487 0.122 81 �4 <0.001
poly(period,1) �4.129 0.329 952 �12.54 <0.001
poly(period,2) �4.288 0.707 952 �6.07 <0.001
tmax 0.048 0.005 952 9.69 <0.001

See Supporting Information Table S2 for AICc parameters. Both models
include the random variable of trap location. T-tests use Satterthwaite’s
method. Poly(period,1) and poly(period,2) indicate the first- and second-
order terms of the second degree polynomial for sampling period,
respectively. Other predictor variables include the percent forest in a
surrounding 1 km buffer (%forest) and monthly maximum temperature
(tmax). Model characteristics include estimate (Est), standard error (SE),
degrees of freedom (df), t-value, and P-value (P).
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Peak biomass

The day of the year of peak biomass varied from 148.5 (28 and
29 May) to 219 (7 August) across the 73 trap locations from

which it was estimable [averaging 175.1 (24 June) � 1.6 days
SE]. Model selection resulted in 12 models with ΔAICc < 2
(Supporting Information Table S4). The most consistent result
was earlier peak biomass dates in locations with more

Fig 3. The effect of temperature on flying insect biomass was positive at the beginning of the growing season in (a) April, and (b) May regardless of Δ
temperature (2019 temperature minus the long-term average temperature), shifted from positive to negative with increasingΔ temperature in (c) June and
(d) July, and again became more positive with temperature independent of Δ temperature in (e) August, (f) September, and (g) October. Number of loca-
tions with sampling (n) within each month are provided within panels a–g. While hotter months tended to have higher Δ temperatures, there was no con-
sistent relationship between temperature andΔ temperatures within months (h). Significant interactions between temperature andΔ temperature occurred
in June and July; all model coefficients are provided in the Supporting Information Table S3.

Fig 4. Biomass over the median sampling day across all 84 trap locations (a), and comparisons between all locations and locations with surroundings
dominated by forests (b; n= 44), grassland/shrubland (c; n= 9), pasture/orchard (d; n= 6), non-irrigated cropland (e; n = 16), and urban environments
(f; n= 6). Point shapes and colours in panel (d) match the dominant land category following shapes and colours in panels b–f. Mean and standard error are
provided for biomass within each land cover category and month. Stars indicate significant differences within each month between dominant land cover
categories and all-location averages (* = 0.05 > P > 0.01, ** = 0.01 > P > 0.001, *** = P < 0.001).
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surrounding grassland/shrubland. Other drivers of peak biomass
date included earlier peak biomass date with increasing eleva-
tion, Δ temperature, and percent forest, and later peak biomass
date with increasing precipitation, percent pasture/orchard, and
percent urban surroundings. However, the predictive power of
the best models of peak insect biomass date was low (R2 s rang-
ing from 0.07 to 0.14; Supporting Information Table S4).

Discussion

In a study of 84 locations widely distributed across Germany, we
found strong effects of temperature on flying insect biomass.
Biomass increased linearly with temperature in contrast to the
unimodal relationship predicted by our first hypothesis (H1a).
However, when large positive deviations from long-term aver-
age temperatures were combined with the hotter summer months
of June and July, temperature no longer had a positive effect on
flying insect biomass, in support of our second hypothesis (H1b).
Temperatures in June 2019 were especially hotter than long-term
averages across trap locations (averaging 4.3 �C � 0.1 SE). In
contrast, insect biomass only increased with temperature in
May 2019, which was cold relative to the long-term averages
(averaging�0.7 �C � 0.1 SE). The negative effect of large devi-
ations from long-term temperature averages in the hotter summer
months suggests insects are adapted to local temperature condi-
tions. Rapid rises in temperature may exceed locally established
tolerance limits or greatly alter the quality and quantity of
resources used by insects, having negative effects on flying
insect communities even in colder climate regions.
A decelerating benefit of temperature in locations with greater

increases in temperature is consistent with previous long-term
studies of insects. In a study of ant communities across North
America conducted 20 years apart, sites with the largest
increases in temperature had the largest declines in colony den-
sity (Kaspari et al., 2019). Similarly, Hallmann et al. (2017)
found biomass loss over time was greatest in mid-summer, when
temperatures were highest, even as temperature had an overall
positive effect on flying insect biomass. Moreover, flying insects
may be more affected by rising temperatures than non-flying
insects as they cannot buffer high temperatures by burrowing
in soil or plant tissue (Baudier et al., 2015; Wagner, 2020). We
predict future monitoring will detect increasingly negative
effects of temperature due to ongoing climate warming, as tem-
perature begins to exceed species’ optimum temperature ranges.
Climate change predictions for Germany suggest slight

increases in cumulative annual precipitation, with shifts in the
timing of rainfall towards wetter summers and drier summers
(Bender et al., 2017). The 2019 growing season matched this
prediction with June, July and August being much drier than
the long-term average and with the wettest month of the study
period being October. As insects can detect changes in baromet-
ric pressure and will stop flying if they sense storms approaching
(Pellegrino et al., 2013), we predicted increased rainfall would
result in reduced flight activity, thus reducing insect biomass.
However, precipitation was not a significant predictor of flying
insect biomass as predicted by H2, potentially due to low varia-
tion in precipitation across locations.

With ~75% of global land significantly altered by human
activities (IPBES, 2019), land cover change and land use inten-
sification are major contributors to insect declines (Potts
et al., 2010; Winfree et al., 2011; Díaz et al., 2019). In contrast
to H3, we did not detect negative effects of urban and agricul-
tural land cover on flying insect biomass. The strongest effect
of surrounding land cover was reduced insect biomass in forests.
Forests may provide fewer floral resources than open fields
(Jachuła et al., 2017). Alternatively, forest vegetation structure
may limit insect movement through the landscape, reducing trap
catch in comparison to open systems like grasslands (Cranmer
et al., 2012). The absence of an effect of heavily human-
impacted habitats on flying insect biomass may be due to a
minority of our locations surrounded by high proportions of
these land cover types, especially intensive agriculture. Higher
temperatures in urban areas may explain the above average bio-
mass in spring and late summer/autumn but also increase insects’
vulnerability in urban areas to future warming in mid-summer.
Additionally, large variability exists in insect habitat quality of
urban areas and agricultural land, ranging from paved expanses
and areas with intensive pesticide use to urban gardens and
low-intensity organic farms (Bengtsson et al., 2005; Hausmann
et al., 2020). While moderately impacted by human activity,
non-irrigated agricultural areas, pasture land, and orchards in this
study tended to support higher biomass, suggesting these land
use types may provide suitable habitats for Germany’s flying
insects. Alternatively, fertilisation and the prevalence of mono-
culture on conventional farms may increase insect biomass
through alleviating nutrient limitation and providing high con-
centrations of host plants, while not benefiting insect biodiver-
sity (Root, 1973; Haddad et al., 2000).

While the date of peak biomass ranged from late May to early
August across trap locations and varied with land cover types,
the percent variance explained by environmental drivers was
low (7–14% of variance explained). The average temperature
at trap locations was not a predictor of the date of peak biomass,
suggesting the overall positive response of flying insect biomass
was not driven by shifts in biomass phenology. However, top
models included a weak effect of locations with higher Δ tem-
peratures having earlier peak biomass dates. Land cover types
and temperature may also interact in their effects on flying insect
biomass, though our number of trap location prohibited the
examination of interaction terms. Earlier peak biomass dates in
grasslands and forests compared to urban areas and pasture/
orchard is indicative of differences between more natural and
more human-modified areas and supported by previous work
finding later phenologies of butterflies (Diamond et al., 2014)
and flower bloom times (Li et al., 2021) in urban areas.

Comparison with Hallmann et al. (2017)

A recent study (Hallmann et al., 2017) reported large
declines in flying insect biomass from 63 German locations
over 27 years. However, sampling locations greatly varied with
years and the majority of locations (58/63) were clustered in
central-west Germany (covering just 2� of latitude). Average
insect biomass reported by Hallmann et al. (2017) varied from
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9192 mg day�1 in 1989 to 2531 mg day�1 in 2016 (May–
September average; no April 1989 sampling was conducted).
In comparison, our traps collected a monthly average of
2404 mg day�1 in May–September. However, Hallmann
et al. (2017) used traps that were ~46% larger (~1.75 m2 per
side) than ours (~1.2 m2), suggesting higher trap catch in our
study relative to the last sampling year (2016) in the study by
Hallmann et al. (2017), if trap size has an appreciable positive
effect on catch. This discrepancy is most likely due to differences
in sampling locations as our study covers a wider range of loca-
tions and habitats than those examined in the study by Hallmann
et al. (2017). However, we cannot rule out an increase in biomass
of flying insects in Germany in 2019 compared to the previous
years assessed in the study by Hallmann et al. (2017).

Caveats

Insect biomass is a common currency ecosystem-level mea-
sure of insect productivity and is an index of energy availability
for higher trophic levels. Nonetheless, from biomass alone, we
cannot differentiate variation in abundance, body size, species
diversity, or dominance. High temperatures may reduce insect
body sizes within species (Atkinson, 1994; Klockmann
et al., 2017; Polidori et al., 2020) or favour smaller species
(Bergmann, 1848; Daufresne et al., 2009; Merckx et al., 2018).
Larger-bodied species are more likely to have become rare ear-
lier in the last century than smaller species (Koh et al., 2004;
Mattila et al., 2006; Seibold et al., 2015; Coulthard
et al., 2019; Rocha-Ortega et al., 2020; though see Hallmann
et al., 2020). Climate and land cover change may otherwise alter
insect communities by favouring particular trophic levels (Welti
et al., 2020a), invasive (Ju et al., 2017), or pest species (Bernal &
Medina, 2018).

Besides examining only biomass, our study comes with sev-
eral other caveats of note. While spatially broad and with high
intensity of seasonal sampling, the study examines only samples
collected within a single year. Such space-for-time, or ecological
gradients approaches have a long and fruitful history in ecology
and are a useful method for providing predictions of temporal
trends in the absence of time series (Pianka, 1966; Peters
et al., 2019), but differences in climatic variation across space
versus time can sometimes lead to different predictions (Blois
et al., 2013). Our study year (2019) was an exceptionally hot
year in the region, which, along with other annual conditions,
may affect our results. Further, while we detected no effects of
precipitation on flying insect biomass. This may be due to the
interacting effects of temperature and precipitation on flying
insects which we were not able to access due to variance inflation
of climatic variables. For example, the combination of high tem-
peratures and humidity has long been known to increase the
probability of flight in several insect groups (Rudolfs, 1925;
Contreras et al., 2013). The lack of an overall unimodal relation-
ship with temperature may be a result of the coarse taxonomic
(flying insects) and temporal (~2 weeks) sample resolution in
comparison to other studies (e.g. Kühsel & Blüthgen, 2015).
Finally, malaise traps do not collect all flying insects with larger
insects like butterflies often being underrepresented.

Future directions: importance of large-scale insect monitoring
programmes

In this first study of flying insect biomass from the German
Malaise Trap Program, we find that even in a temperate climate,
the positive effect of temperature on flying insect biomass dimin-
ished when combined with high positive deviations in tempera-
ture from the long-term average, and hotter mid-summer
months. These interactions could not have been elucidated with-
out growing season-long monitoring across a large number of
locations including a thermal gradient. Large-scale, long-term
standardised monitoring is a critical tool to disentangle potential
drivers of insect decline and understand how this varies with
region and taxa. Empirical studies of insect communities often
lack the spatial coverage to be broadly representative across hab-
itats (but see Jeliazkov et al., 2016; Wepprich et al., 2019; Foris-
ter et al., 2021). Meta-analyses have large spatial coverage, but
must reckon with variable research goals and methodologies
(Gurevitch & Mengersen, 2010). Spatially distributed monitor-
ing efforts of ecological communities primarily target plants
and vertebrates but not insects (Eggleton, 2020). Notable excep-
tions include mosquito and ground beetle monitoring by the US
National Ecological Observation Network (Thorpe et al., 2016),
and several regional-scale Lepidoptera monitoring programmes
(Kühn et al., 2008; e.g. Dennis et al., 2019; van Swaay
et al., 2019). The Global Malaise Trap Program, operating since
2012 (http://biodiversitygenomics.net/projects/gmp/), and the
Swedish Malaise Trap Program (operational from 2003 to
2006; Karlsson et al., 2020) are taxonomic treasure troves,
though neither measure biomass. The GermanMalaise Trap Pro-
gram helps to fill the gap of a distributed, standardised, and con-
tinuous monitoring programme of flying insects for Germany.
Malaise traps are currently being considered as a standard com-
ponent of European insect biodiversity surveys at eLTER sites
(https://elter-projects.org/), and this programme provides a blue-
print for a coordinated large-scale malaise trap sampling network
(Haase et al., 2018). As highlighted by the recent insect decline
debate (Wagner et al., 2021), comprehensive and standardised
monitoring is critical to meet the challenge of unravelling insect
trends and drivers in the Anthropocene.
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