66 research outputs found

    The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study

    Get PDF
    Short-chain fatty acids are microbial metabolites that have been shown to be key regulators of the gut–joint axis in animal models. In humans, microbial dysbiosis was observed in rheumatoid arthritis (RA) patients as well as in those at-risk to develop RA, and is thought to be an environmental trigger for the development of clinical disease. At the same time, diet has a proven impact on maintaining intestinal microbial homeostasis. Given this association, we performed a feasibility study in RA patients using high-fiber dietary supplementation with the objective to restore microbial homeostasis and promote the secretion of beneficial immunomodulatory microbial metabolites. RA patients (n = 36) under routine care received daily high-fiber bars or cereals for 28 days. Clinical assessments and laboratory analysis of immune parameters in blood and stool samples from RA patients were done before and after the high-fiber dietary supplementation. We observed an increase in circulating regulatory T cell numbers, favorable Th1/Th17 ratios, as well as decreased markers of bone erosion in RA patients after 28 days of dietary intervention. Furthermore, patient-related outcomes of RA improved. Based on these results, we conclude that controlled clinical studies of high-fiber dietary interventions could be a viable approach to supplement or complement current pharmacological treatment strategies

    The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    Get PDF
    We thank Manuel Kulagin for technical help, Pierre Bonnaventure for portal vein blood sampling, Francisco Sepulveda for technical assistance in GS-MS acquisition, and Dorothee Hahne (Metabolomics Australia, University of Western Australia) for human samples SCFA isolation, acquisition, and analysis. We also thank Cristina Cartoni (Phenotyping Unit, EPFL) for Milliplex analysis, Jessica Dessimoz and her team from the Histology Core Facility (EPFL), Miguel Garcia and his team from the Flow Cytometry Core Facility (EPFL), and staff from the EPFL CPG animal house for excellent animal care. The computations were partially performed at the Vital-IT Center for high-performance computing of the SIB Swiss Institute of Bioinformatics (http://www.vital-it.ch). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 310948. Funding for A.W.W. and a subset of the 16S rRNA gene sequencing was provided by the Wellcome Trust (grant number WT 098051). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Free Fatty Acids in Bone Pathophysiology of Rheumatic Diseases

    Get PDF
    Obesity—in which free fatty acid (FFA) levels are chronically elevated—is a known risk factor for different rheumatic diseases, and obese patients are more likely to develop osteoarthritis (OA) also in non-weight-bearing joints. These findings suggest that FFA may also play a role in inflammation-related joint damage and bone loss in rheumatoid arthritis (RA) and OA. Therefore, the objective of this study was to analyze if and how FFA influence cells of bone metabolism in rheumatic diseases. When stimulated with FFA, osteoblasts from RA and OA patients secreted higher amounts of the proinflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, growth-related oncogene α, and monocyte chemotactic protein 1. Receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin, and osteoblast differentiation markers were not influenced by FFA. Mineralization activity of osteoblasts correlated inversely with the level of FFA-induced IL-6 secretion. Expression of the Wnt signaling molecules, axin-2 and β-catenin, was not changed by palmitic acid (PA) or linoleic acid (LA), suggesting no involvement of the Wnt signaling pathway in FFA signaling for osteoblasts. On the other hand, Toll-like receptor 4 blockade significantly reduced PA-induced IL-8 secretion by osteoblasts, while blocking Toll-like receptor 2 had no effect. In osteoclasts, IL-8 secretion was enhanced by PA and LA particularly at the earliest time point of differentiation. Differences were observed between the responses of RA and OA osteoclasts. FFA might therefore represent a new molecular factor by which adipose tissue contributes to subchondral bone damage in RA and OA. In this context, their mechanisms of action appear to be dependent on inflammation and innate immune system rather than Wnt-RANKL pathways

    Antibodies and IL-3 support helminth-induced basophil expansion

    Get PDF
    Basophils are powerful mediators of Th2 immunity and are present in increased numbers during allergic inflammation and helminth infection. Despite their ability to potentiate Th2 immunity the mechanisms regulating basophil development remain largely unknown. We have found a unique role for isotype-switched antibodies in promoting helminth-induced basophil production following infection of mice with Heligmosomoides polygyrus bakeri or Nippostrongylus brasiliensis. H. polygyrus bakeri-induced basophil expansion was found to occur within the bone marrow, and to a lesser extent the spleen, and was IL-3 dependent. IL-3 was largely produced by CD4+CD49b+NK1.1− effector T cells at these sites, and required the IL-4Rα chain. However, antibody-deficient mice exhibited defective basophil mobilization despite intact T-cell IL-3 production, and supplementation of mice with immune serum could promote basophilia independently of required IL-4Rα signaling. Helminth-induced eosinophilia was not affected by the deficiency in isotype-switched antibodies, suggesting a direct effect on basophils rather than through priming of Th2 responses. Although normal type 2 immunity occurred in the basopenic mice following primary infection with H. polygyrus bakeri, parasite rejection following challenge infection was impaired. These data reveal a role for isotype-switched antibodies in promoting basophil expansion and effector function following helminth infection

    Differential Roles of MAPK Kinases MKK3 and MKK6 in Osteoclastogenesis and Bone Loss

    Get PDF
    Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38 alpha is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3-/- cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3-/- and MKK6-/- mice by micro-CT analysis. Bone loss was partially inhibited in MKK3-/- as well as MKK6-/- mice, despite normal osteoclastogenesis in MKK6-/- cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation

    IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.

    Get PDF
    Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity

    Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors

    Get PDF
    Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized

    Cell-Intrinsic NF-κB Activation Is Critical for the Development of Natural Regulatory T Cells in Mice

    Get PDF
    regulatory T (Treg) cells develop in the thymus and represent a mature T cell subpopulation critically involved in maintaining peripheral tolerance. The differentiation of Treg cells in the thymus requires T cell receptor (TCR)/CD28 stimulation along with cytokine-promoted Foxp3 induction. TCR-mediated nuclear factor kappa B (NF-κB) activation seems to be involved in differentiation of Treg cells because deletion of components of the NF-κB signaling pathway, as well as of NF-κB transcription factors, leads to markedly decreased Treg cell numbers in thymus and periphery. thymic Treg precursors and their further differentiation into mature Treg cells. Treg cell development could neither be completely rescued by the addition of exogenous Interleukin 2 (IL-2) nor by the presence of wild-type derived cells in adoptive transfer experiments. However, peripheral NF-κB activation appears to be required for IL-2 production by conventional T cells, thereby participating in Treg cell homeostasis. Moreover, pharmacological NF-κB inhibition via the IκB kinase β (IKKβ) inhibitor AS602868 led to markedly diminished thymic and peripheral Treg cell frequencies.Our results indicate that Treg cell-intrinsic NF-κB activation is essential for thymic Treg cell differentiation, and further suggest pharmacological NF-κB inhibition as a potential therapeutic approach for manipulating this process

    Alcohol Consumption in Rheumatoid Arthritis: A Path through the Immune System

    No full text
    Benefits and harms of different components of human diet have been known for hundreds of years. Alcohol is one the highest consumed, abused, and addictive substances worldwide. Consequences of alcohol abuse are increased risks for diseases of the cardiovascular system, liver, and nervous system, as well as reduced immune system function. Paradoxically, alcohol has also been a consistent protective factor against the development of autoimmune diseases such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (RA). Here, we focused on summarizing current findings on the effects of alcohol, as well as of its metabolites, acetaldehyde and acetate, on the immune system and RA. Heavy or moderate alcohol consumption can affect intestinal barrier integrity, as well as the microbiome, possibly contributing to RA. Additionally, systemic increase in acetate negatively affects humoral immune response, diminishing TFH cell as well as professional antigen-presenting cell (APC) function. Hence, alcohol consumption has profound effects on the efficacy of vaccinations, but also elicits protection against autoimmune diseases. The mechanism of alcohol’s negative effects on the immune system is multivariate. Future studies addressing alcohol and its metabolite acetate’s effect on individual components of the immune system remains crucial for our understanding and development of novel therapeutic pathways

    Higher serum levels of short-chain fatty acids are associated with non-progression to arthritis in individuals at increased risk of RA

    No full text
    n/aFunding Agencies|King Gustaf Vs 80-year foundation; Swedish Rheumatism association; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [DFG-FOR2886, CRC1181]; Bundesministerium fur Bildung und Forschung (BMBF)Federal Ministry of Education &amp; Research (BMBF); IMI; the Emerging Fields Initiative MIRACLE of the Friedrich-Alexander-Universitat Erlangen-Nurnberg; ALF grants from Region Ostergotland; H2020 Nanoscope ERC Synergy Project [810316-4D]</p
    corecore