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Obesity—in which free fatty acid (FFA) levels are chronically elevated—is a known risk

factor for different rheumatic diseases, and obese patients are more likely to develop

osteoarthritis (OA) also in non-weight-bearing joints. These findings suggest that FFAmay

also play a role in inflammation-related joint damage and bone loss in rheumatoid arthritis

(RA) andOA. Therefore, the objective of this study was to analyze if and how FFA influence

cells of bone metabolism in rheumatic diseases. When stimulated with FFA, osteoblasts

from RA and OA patients secreted higher amounts of the proinflammatory cytokine

interleukin (IL)-6 and the chemokines IL-8, growth-related oncogene α, and monocyte

chemotactic protein 1. Receptor activator of nuclear factor kappa B ligand (RANKL),

osteoprotegerin, and osteoblast differentiation markers were not influenced by FFA.

Mineralization activity of osteoblasts correlated inversely with the level of FFA-induced

IL-6 secretion. Expression of the Wnt signaling molecules, axin-2 and β-catenin, was not

changed by palmitic acid (PA) or linoleic acid (LA), suggesting no involvement of the Wnt

signaling pathway in FFA signaling for osteoblasts. On the other hand, Toll-like receptor 4

blockade significantly reduced PA-induced IL-8 secretion by osteoblasts, while blocking

Toll-like receptor 2 had no effect. In osteoclasts, IL-8 secretion was enhanced by PA

and LA particularly at the earliest time point of differentiation. Differences were observed

between the responses of RA and OA osteoclasts. FFA might therefore represent a new

molecular factor by which adipose tissue contributes to subchondral bone damage in

RA and OA. In this context, their mechanisms of action appear to be dependent on

inflammation and innate immune system rather than Wnt-RANKL pathways.

Keywords: fatty acid, inflammation, osteoblasts, osteoclasts, rheumatoid arthritis, osteoarthritis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS FAU - Online-Publikationssystem der Friedrich-Alexander-Universität...

https://core.ac.uk/display/286436041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02757
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02757&domain=pdf&date_stamp=2019-12-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:k.frommer@kerckhoff-klinik.de
https://doi.org/10.3389/fimmu.2019.02757
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02757/full
http://loop.frontiersin.org/people/767605/overview
http://loop.frontiersin.org/people/837788/overview
http://loop.frontiersin.org/people/805142/overview
http://loop.frontiersin.org/people/419188/overview
http://loop.frontiersin.org/people/4983/overview
http://loop.frontiersin.org/people/210476/overview
http://loop.frontiersin.org/people/620506/overview
http://loop.frontiersin.org/people/652984/overview


Frommer et al. Role of FFAs in Rheumatic Diseases

INTRODUCTION

Obesity is not just a matter of excess body weight, but it
is also associated with numerous inflammatory cardiovascular
and metabolic diseases such as atherosclerosis, coronary heart
disease, and type 2 diabetes (1). This link to inflammation can be
attributed to adipose tissue being a source of various biologically
active mediators including cytokines [e.g., tumor necrosis factor,
interleukin (IL)-6] (2–4), adipokines (e.g., adiponectin, visfatin)
(5, 6), complement factors (7, 8), and certain free fatty acids (FFA)
(9). These factors may in part be responsible for the long-term
comorbidities of obesity (10–12). In particular, serum/plasma
levels of FFA, i.e., fatty acids, which are not covalently bound
to other molecules, are chronically elevated in obese individuals
compared to lean individuals (9, 13, 14). Results from in vitro

experiments, in which FFA modulated the gene expression of

adipocytes (15) and hepatocytes (16), suggest that they may

contribute to cardiovascular and metabolic diseases. However,
they may also be involved in rheumatic diseases. Obesity is
a known risk factor for different rheumatic diseases (17–21)
including osteoarthritis (OA) and rheumatoid arthritis (RA).
Several observations support the notion that this is not merely
due to increased mechanical stress. For instance, obesity not only
causes a higher incidence of arthritis in weight-bearing joints
but also in non-weight-bearing joints such as the hands (17, 22–
24). It has also been shown that body fat is more detrimental
in OA than excess body weight since changes in body fat rather
than body weight were related to the symptomatic relief of obese
patients with OA (25). Notably, this was not due to increased
muscle strength or improved knee-joint alignment as neither of
these were associated with the degree of symptomatic relief (26).
Several animal models support the role of obesity or a high-
fat diet in OA: In mice, high fat diet-induced obesity caused
OA and systemic inflammation in proportion to body fat, while
OA symptoms were not deteriorated but instead alleviated by
increased mechanical joint loading via intense long-term exercise
(27). Surgically induced OA in mice was accelerated by short-
and long-term high fat diets (28), and obese mice developed
more severe OA caused by intra-articular fracture than control
mice (29). A possible link between metabolic factors and OA is
also suggested by the observation that the subtype of metabolic
OA sets in earlier and progresses more quickly in comparison
to other subtypes while at the same time being accompanied
by chronic low grade inflammation (30). Interestingly, a recent
study showed increased FFA serum levels in RA patients and
in individuals at risk for RA (31). This is in line with our
previous findings showing proinflammatory effects of FFA on
RA synovial fibroblasts, endothelial cells, and chondrocytes (32).
However, the joint pathology in OA and RA also includes the
subchondral bone (33, 34), exhibiting hypomineralization and/or
changes in microstructure. A potential pathophysiological role of
FFA in osteoporosis is also suggested by clinical studies showing
associations between the relative proportion of bone marrow
adipose tissue, another distinct fat depot, and bone mineral
density (35, 36) and animal studies showing a negative effect
of high-fat diets on bone density (37, 38). In this study, we
therefore investigated whether selected FFA affect cells of bone

TABLE 1 | Characteristics of rheumatoid arthritis (RA) and osteoarthritis (OA)

patients donating bone samples.

RA patients OA patients

n 15 20

% female 93% 70%

% male 7% 30%

Age mean ± SD 70 ± 8 62 ± 14

Age median (IQR) 62 (49−75) 71 (65−76)

Age range 43–79 56–85

MTX treatment (Y/N/–) 6/9/– 1/15/4

Corticosteroid treatment (Y/N/–) 13/2/– 1/15/4

Biologics treatment (Y/N/–) 7/8/– 0/16/4

SD, standard deviation; IQR, interquartile range; MTX, methotrexate; Y/N/–,

yes/no/information not available.

TABLE 2 | Characteristics of rheumatoid arthritis (RA) and osteoarthritis (OA)

patients donating blood.

RA patients OA patients

n 4 4

% female 25% 100%

% male 75% 0%

Age mean ± SD 67 ± 10 67 ± 3

Age median (IQR) 71 (65−74) 68 (66−69)

Age range 52–75 63–70

SD, standard deviation; IQR, interquartile range.

remodeling, specifically palmitic acid, a saturated fatty acid, and
linoleic acid, an unsaturated omega-6 fatty acid, which are the
two most abundant FFA in plasma (39).

MATERIALS AND METHODS

Isolation and Culture of Murine Primary
Osteoblasts
Calvariae of female 4-day-old C57BL/6J mice were used for
obtaining primary murine osteoblasts. For each of the six
experiments (n = 6), calvariae from five mice were sequentially
digested in 1ml alpha-Minimal Essential Media (α-MEM)
(Gibco/Invitrogen) containing 0.1% collagenase type IA (Sigma-
Aldrich) and 0.2% dispase II (Sigma-Aldrich) while shaking for
10min per fraction at 37◦C. Cells isolated from the fractions
were combined as osteoblastic cells and expanded for 6 days.
For differentiation, osteoblasts were cultured in α-MEM (Gibco)
supplemented with 10% fetal bovine serum (FBS) (Biochrom)
and 1% penicillin/streptomycin (Invitrogen) for 21 days.

Human Bone Tissue and Blood
Bone tissues were obtained from RA and OA patients who
were undergoing knee-joint replacement surgery. Blood samples
were obtained from RA and OA patients during regular medical
examinations. The patient characteristics are listed in Tables 1,
2. The study was approved by the local Ethics Committee, and all
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patients gave written informed consent before tissue collection or
blood donation. All specimens were taken from patients fulfilling
the criteria of the American College of Rheumatology for RA (40)
or OA (41).

Isolation and Culture of Human Primary
Osteoblasts
Samples of cancellous bone tissue were cut into pieces of∼2mm2

in size and washed with phosphate-buffered saline (Biochrom).
The bone fragments were incubated with a 1:1 mixture
of trypsin/ethylenediaminetetraacetic acid (Capricon Scientific)
and phosphate-buffered saline for 5min at 37◦C. Predigestion
was stopped by adding the osteoblast culture medium MEM +

GlutaMAX
TM

(Gibco/Invitrogen) supplemented with 10% FBS
(Sigma-Aldrich), 100 U/ml penicillin and 10µg/ml streptomycin
(both AppliChem). The supernatant was carefully removed, and
the bone fragments were resuspended in fresh culture medium
and transferred into 75-cm2 culture flasks to allow for cellular
outgrowth. After reaching confluency, cells were detached using
trypsin/ethylenediaminetetraacetic acid and used for further
culturing up to passage 2. Cells were cultured at 37◦C and
5% CO2.

Stimulation of Osteoblasts With Free Fatty
Acids
Murine osteoblasts and human osteoblasts (in passage 2) were
stimulated with FFA for 24 h. Cells were grown to 100%
confluency before stimulation. FFA were obtained from Sigma-
Aldrich at the highest purity available (chemically synthesized,
GC purified). As in vivo FFA are mainly bound to serum albumin
for increased solubility and prevention of cellular toxicity,
fatty acid/bovine serum albumin (BSA) complex solutions were
prepared as described previously (32). Fatty acid solutions
were sterile filtered before use in stimulation experiments. Two
different FFA were used for the stimulation experiments at a
concentration of 100 µM: palmitic acid (C16:0) as a saturated
fatty acid and linoleic acid (C18:2, n-6) as an unsaturated fatty
acid, specifically an omega-6 fatty acid. Controls, i.e., cells to
which no FFA were added, were treated with the fatty acid
solvent (= vehicle) to exclude effects mediated by the vehicle.
The vehicle was prepared in the same manner as the FFA
solutions but without adding fatty acids. The equivalent to a
10-mM FFA stock solution consisted of 4.5% (w/v) BSA and
5% (v/v) ethanol. Considering the concentration of 100µM
FFA used in the stimulation experiments, this leads to a final
concentration of 0.045% (w/v) BSA and 0.05% (v/v) ethanol.
After stimulation, supernatants were collected for further analysis
and cells harvested for RNA isolation. All stimulations were
performed in triplicate wells.

Inhibition of TLR4 and TLR2 Signaling
Toll-like receptor (TLR) 4 and TLR2 were blocked with
neutralizing antibodies (5µg/ml; both from Invivogen). A
matched isotype antibody (Invivogen) was used as a control. Cells
were preincubated for 2 h with the neutralizing antibodies before
stimulation with FFA.

Mineralization Assay
Primary osteoblasts were seeded into 24-well culture plates
at a density of 2 × 104 cells per well and grown to
confluency. For the induction of mineralization, the medium
was exchanged by osteoblast culture medium supplemented with
5mM glycerophosphate (Calbiochem) and 100µg/ml ascorbic
acid (Sigma-Aldrich) (= mineralization medium). In parallel,
cells were cultured with mineralization medium plus FFA
(100µM) or vehicle to assess the effect of FFA on osteoblast
mineralization and with normal osteoblast culture medium
as a control. Medium change was performed every 2–3 days
(Monday/Wednesday/Friday) until day 21. All stimulations and
controls were performed in triplicate wells. After day 21, cells
were fixed with formalin (Roth), and mineralized matrix was
stained with 2% (w/v) Alizarin Red S (pH 4.2) (Sigma-Aldrich).
Cells were washed with ddH2O. The red stain was extracted
for quantification using a modified version of the protocol by
Gregory et al. (42). For extraction of the stain, 10% (v/v) acetic
acid (Roth) was used, which was neutralized by 10% ammonia
solution (Merck). The absorbance was measured at 492 nm.

Isolation and Culture of Murine Osteoclast
Precursors
Bone marrow isolated from three female 8-week-old C57BL/6J
mice (n = 3) by flushing femoral bones with complete media
was used for bone marrow cell isolation. Cells were cultured
overnight in α-MEM (Sigma-Aldrich) containing 10% FBS
(Sigma-Aldrich) and macrophage colony-stimulating factor (M-
CSF) (50 ng/ml) (R&D Systems). After 24 h, non-adherent cells
were harvested and seeded in 96-well flat bottom plates (2 ×

105 cells per well) in α-MEM supplemented with 10% FBS,
30 ng/ml M-CSF, and 50 ng/ml RANKL (R&D Systems) in the
presence or absence of FFA. Medium was changed after 72 h.
Cell culture supernatants were collected after 4 days for enzyme-
linked immunosorbent assay (ELISA) measurements.

Isolation of Human Peripheral Blood
Mononuclear Cells
Heparinized, peripheral blood was obtained from RA or OA
patients after written informed consent, and peripheral blood
mononuclear cells (PBMCs) were isolated on a Ficoll 400-based
(Biocoll Separating Solution; Biochrom) density gradient. The

isolated PBMC were resuspended in MEM + GlutaMAX
TM

supplemented with 10% FBS, 100 U/ml penicillin + 10µg/ml
streptomycin, and 30 ng/ml M-CSF (Peprotech). For preparation
of RNA lysates and collection of supernatants, cells were seeded
in 24-well plates at a density of 1.5× 106 cells per well. Cells were
seeded in triplicate wells and cultured at 37◦C and 5% CO2.

Differentiation of Human PBMC Into
Osteoclasts and Stimulation With Free
Fatty Acids
Differentiation of PBMC into osteoclasts was performed as
follows: On day 1, the culture medium was exchanged with
medium containing 30 ng/ml M-CSF (R&D), 50 ng/ml RANKL
(R&D), and 5 ng/ml transforming growth factor beta (R&D).
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FIGURE 1 | Free fatty acids palmitic acid and linoleic acid induce a proinflammatory response in osteoblasts. Supernatants of RA and OA osteoblasts were analyzed

after 24 h stimulation with palmitic acid or linoleic acid for IL-6 (RA: n = 14, OA: n = 20), IL-8 (RA: n = 14, OA: n = 20), and MCP-1 (RA: n = 3, OA: n = 3). Both fatty

acids significantly enhanced the secretion of these factors in RA (A–C) and OA (D–F) osteoblasts. *p < 0.05; **p < 0.001; and ***p < 0.001. MCP-1, monocyte

chemotactic protein 1 (CCL2).

On day 4, concentration of the differentiation factors within the
medium was reduced to 10 ng/ml for M-CSF and to 5 ng/ml
for RANKL to allow detection of potential effects of FFA on
osteoclast differentiation. Starting with day 5, FFA was added to
the culture medium, and the medium was changed every 3 days.
Cell culture supernatants were collected on days 8, 11, and 14.
Cells were harvested for RNA isolation on day 14.

Real-Time Polymerase Chain Reaction
RNA was isolated from osteoblasts using the RNeasy Mini Kit,
according to the manufacturer’s instructions (Qiagen). RNA
was reverse transcribed into complementary DNA according
to a standard protocol using avian myeloblastosis virus reverse
transcriptase (Promega) and random hexamer primers (Roche).
After denaturation (2min at 70◦C) and immediate cooling down
on ice, reverse transcription was performed for 30min at 42◦C,
30min at 55◦C, and 10min at 70◦C. Complementary DNA
samples were analyzed by real-time PCR in a LightCycler (Roche)
using SYBR Green I. Real-time PCR cycling conditions were
15min at 95◦C, 50 cycles of 15 s at 95◦C, 35 s at 53–65◦C
(depending on the primer pair), and 35 s at 72◦C, and were
finished using a melting curve analysis program. The reference

gene for normalization was 18S ribosomal RNA. The results were
analyzed with the Roche LightCycler software and Microsoft
Excel according to the 11Ct method (43).

Immunoassays
Protein levels in cell culture supernatants were measured using
commercially available ELISAs. Human osteoprotegerin (OPG)
was quantified with an ELISA from Enzo Life Sciences and
human sRANKL with an ELISA from RayBiotech; all other
ELISAs were from R&D Systems.

Statistical Analysis
Data are presented as arithmetic mean ± standard error
of mean (SEM) and were calculated based on biological
replicates. Fold changes were log2 transformed before statistical
analysis. Normality of data was tested for by the Shapiro–Wilk
test. Normally distributed data were analyzed for statistically
significant differences by one-way ANOVA + Holm–Sidak’s
multiple comparisons test, while the Friedman test with Dunn’s
multiple comparisons test was used for non-normally distributed
(paired) data. Correlation analysis was performed according
to Pearson. p < 0.05 were considered statistically significant.
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FIGURE 2 | Free fatty acids palmitic acid and linoleic acid induce the secretion

of the chemokine GRO-α in osteoblasts. GRO-α was induced from a

non-detectable level in RA (A,B, n = 14) and OA (C,D, n = 20) in a subset of

osteoblast populations. *p < 0.05; **p < 0.001; and ***p < 0.001. GRO-α,

Growth-related oncogene α (CXCL1).

Statistical calculations were performed using GraphPad Prism 6
(GraphPad Software, Inc., La Jolla, USA).

RESULTS

Proinflammatory Response of Osteoblasts
to Free Fatty Acids
Preliminary experiments with murine osteoblasts stimulated
with palmitic acid (C16:0) and linoleic acid (C18:2) at 100µM
showed significant increases in IL-6 and monocyte chemotactic
protein 1 (MCP-1) secretion (n = 6 each) (Figure S1). Hence,
RA osteoblasts (n = 14) as well as OA osteoblasts (n = 20)
were stimulated with palmitic acid and linoleic acid at 100µM.
Both fatty acids significantly increased the secretion of the
proinflammatory cytokine IL-6 (RA, n = 14/OA, n = 20) as well
as the chemokines IL-8 (RA, n= 14/OA, n= 20) andMCP-1 (RA,
n= 3/OA, n= 3) by RA and OA osteoblasts (Figure 1). Growth-
related oncogene α (GRO-α) secretion was induced from a non-
detectable level (<31.2 pg/ml) to a detectable level in OA and
RA osteoblasts (Figure 2) in only a subset of human osteoblasts
from different patients (5/14 RA osteoblast populations for both
FFA; 11/20 OA osteoblast populations for palmitic acid, 8/20 OA
osteoblast populations for linoleic acid). However, we did not
observe any association of the responses to FFA with the patient
data available, which included age, sex, andmedication, and there
were no significant differences in the responses between RA and
OA osteoblasts.

FIGURE 3 | Blocking Toll-like receptor (TLR) 4 but not TLR2 significantly

reduces the palmitic-acid-mediated interleukin-8 (IL-8) secretion by

osteoblasts. TLR2 and TLR4, two receptors for free fatty acid (FFA), were

blocked by neutralizing antibodies on rheumatoid arthritis (RA) osteoblasts (n

= 3). Palmitic-acid-induced IL-8 secretion was significantly reduced by the

anti-TLR4 antibody but not by the anti-TLR2 antibody or the isotype control

antibody. *p < 0.05. Ctrl, control; Ab, antibody; TLR, Toll-like receptor.

Effect of Free Fatty Acids on
Osteoblast-Expressed Factors Regulating
Osteoclastogenesis
Under appropriate conditions, osteoblasts are capable of
expressing and secreting the osteoclastogenesis regulating factors
“receptor activator of NF-κB ligand” (RANKL) and OPG
with OPG being the antagonist of RANKL. Stimulation with
palmitic acid or linoleic acid did not change messenger
RNA (mRNA) expression of OPG (n = 3) and RANKL
(n = 1) by RA osteoblasts, which could be confirmed for
RA and OA osteoblasts by protein quantification via ELISA.
sRANKL remained below detection level (<370 pg/ml) in
both RA (n = 3) and OA osteoblasts (n = 3), while
OPG was detectable but showed no changes (RA OB 1.2-
fold change, p > 0.05/OA OB 1.0-fold change, p > 0.05;
n= 3 each).

Effect of Free Fatty Acids on Expression of
Central Wnt Signaling Molecules
As the Wnt signaling pathway is one of the pathways that affect
osteoblast differentiation and activity, we analyzed the mRNA
expression of two of its key molecules: axin-2 (conductin) and β-
catenin. However, neither palmitic acid nor linoleic acid changed
the mRNA expression in RA (1.1-fold change, p> 0.05; n= 3) or
OA osteoblasts (1.5-fold change, p > 0.05; n= 3).
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FIGURE 4 | Mineralization activity of osteoblasts correlates with their IL-6 secretion. The mineralization activity of rheumatoid arthritis (RA) (n = 10) and osteoarthritis

(OA) (n = 14) osteoblasts was inversely correlated with the changes in IL-6 secretion levels. There was a significant inverse correlation for RA (A) and OA osteoblasts

(B) as well as the combination of both (C).

Analysis of the Role of TLR2 and TLR4 in
Palmitic-Acid-Induced IL-8 Secretion by
Osteoblasts
TLR2 and TLR4 have previously been described as receptors for
FFA (15, 44–47). In addition, previous results suggest that TLR4
may be involved in arthritis-dependent joint destruction (32, 48,
49). To analyze the role of these TLRs in fatty-acid-mediated
effects on RA osteoblasts, we specifically blocked TLR2 or TLR4
using neutralizing antibodies and quantifying osteoblast-secreted
IL-8, the chemokine which showed the highest induction by
palmitic acid and linoleic acid. In these experiments, palmitic
acid was used as the stimulant. The neutralizing TLR4 antibody
significantly reduced the IL-8 secretion, while the neutralizing
TLR2 antibody had no effect on the RA osteoblasts (Figure 3,
n= 3 each).

Effect of Free Fatty Acids on Mineralization
Activity of Osteoblasts
Mineralization activity of osteoblasts varied between different
cell populations (i.e., cells from different patients) as did the
changes in IL-6 secretion induced by FFA. We therefore analyzed
whether the osteoblastic mineralization activity correlated with
the changes in IL-6 secretion. A significant inverse correlation
could be found between these parameters for RA (r = −0.79,
p = 0.0067; n = 10) and OA osteoblasts (r = −0.67, p = 0.0083;
n = 14) as well as the combination of both (r = −0.66,

p = 0.0005; n = 24), i.e., the mineralization activity was reduced
with increasing IL-6 secretion levels (Figure 4).

Influence of Free Fatty Acids on
Osteoclasts
Preliminary experiments with murine osteoclasts (differentiated
from bone marrow cells) showed an increased secretion of IL-6,
macrophage inflammatory protein (MIP) 1,α and MIP-1β (n =

3) at day 4 of differentiation when treated with FFA for 3 days
(Figure S2). Of note, murine osteoclast precursors differentiate
more quickly than human osteoclast precursors.

Human osteoclasts were differentiated from PBMC. At the
final differentiation time point (d14), cathepsin K, CLCN7
(chloride channel 7), and TCIRG (subunit of a V-type proton
ATPase), three markers of osteoclast activity, were not affected in
RA osteoclasts (n = 3) by palmitic acid or linoleic acid at mRNA
level. The FFA also had no effect on the mRNA expression of
osteoclast-associated receptor and nuclear factor of activated T
cells, cytoplasmic 1, two markers of osteoclast differentiation, at
d14. MMP-9 secretion was not significantly changed by FFA at
any of the analyzed time points (d8, d11, d140 (n = 4). FFA,
however, changed the IL-8 secretion of osteoclasts and their
precursors (n= 4) (Figure 5). This effect was most prominent at
the earliest time point (d8) and weaker at the later time points
(d11, d14). The changes did not reach statistical significance
for OA cells (Figures 5D–F). Interestingly, there was a very
big difference in the response of RA cells and OA cells at d8
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FIGURE 5 | Human osteoclasts and their precursors from rheumatoid arthritis (RA) patients respond differently to free fatty acids than their counterparts from

osteoarthritis (OA) patients. Palmitic acid and linoleic acid significantly increased the interleukin-8 (IL-8) secretion of RA osteoclasts and their precursors (n = 4),

particularly at the earliest time point (d8) (A–C), while equivalent cells from OA patients (n = 4) only showed weaker effects without statistical significance (D–F). *p <

0.05; **p < 0.001; and ***p < 0.001.

[Figure 5A (fold change scale, 0–300)/Figure 5D (fold change
scale, 0–20)], which was much less pronounced at the later
time points.

DISCUSSION

High-fat diets have proven to be detrimental in the context of
various mouse models of arthritis (27–29, 50). Although this type
of diet generally results in obesity, the accompanying increased
mechanical load does not appear to be the only or major factor
leading to the aggravation of OA as shown by Griffin et al. (27).
In addition, several observations in humans suggest that other

factors are involved in the effects of obesity as has been elucidated
in the introduction. These factorsmay include FFA. Furthermore,
data from human studies as well as data from animal models
suggest that lipid levels also affect bone remodeling (51–54).
Dietary intake of saturated fats was inversely correlated with
bone density in humans (55), suggesting a detrimental effect of

these fats and their components on bone metabolism. As these
factors are generally associated with increased FFA levels and as
obesity has been found to be a risk factor for OA and RA (17–
19), we hypothesized that chronically elevated FFA levels may
have a negative impact on subchondral bone integrity in these
rheumatic diseases.

It has previously been shown that saturated fatty acids
including palmitic acid (56, 57) enhance RANKL-induced
osteoclastogenesis. On the other hand, unsaturated omega-3
fatty acids such as docosahexaenoic acid and eicosapentaenoic
acid decreased RANKL-induced osteoclastogenesis (58–60).
However, the unsaturated omega-6 fatty acid linoleic acid did not
have a direct effect on osteoclastogenesis (58, 59) and also did
not affect bone resorption in vitro (59) in contrast to palmitic
acid, which increased bone resorption on dentin disks (57). In
our experiments, the stronger induction of IL-8 secretion by
palmitic and linoleic acid in RA vs. OA osteoclasts indicates
an increased sensitivity of the RA cells toward these FFA. In
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contrast, we did not observe such a difference between RA
osteoblasts and OA osteoblasts but found similar inductions
of several proinflammatory factors including the cytokine IL-
6. Interestingly, the degree to which IL-6 secretion could be
induced in the osteoblasts by FFA was inversely correlated
with their relative mineralization activity, indicating a link
between inflammation and reduced bone mineralization (61).
The chemokine GRO-α was not induced across all osteoblast
populations examined but only in a subset. Age, sex, and
medication were not associated with GRO-α induction or the
lack thereof, meaning that other patient characteristics must be
responsible for the difference. These might be differences at the
molecular level such as different receptor densities or expression
levels of signaling molecules. Axin-2 and β-catenin, two key
molecules of theWnt signaling pathway (62), were not influenced
by palmitic or linoleic acid in osteoblastic cells, suggesting
that these fatty acids do not directly affect osteoblastogenesis.
Although both TLR2 and TLR4 have previously been described
as receptors for FFA in other cell types (15, 44–47), our
results suggest a role of TLR4 but not TLR2 in palmitic-acid-
induced effects on osteoblasts. This could partially explain the
so-called “Adonis” phenotype of mice with a defective TRL4
receptor. In addition, TLR4-dependent pathways have been
shown to be involved in joint remodeling in arthritis mouse
models (48, 49). Besides low adiposity, this mouse phenotype
is characterized by stronger bones with increased bone mineral
content and density (63). This is also in agreement with the
results by Oh et al. (56), which showed that the knockout
of TLR4 eliminated the enhanced survival effect of saturated
fatty acids on murine osteoclasts. Not all FFA are equal in
structure and effect. There are short-, medium, and long-chain
fatty acids as well as saturated and unsaturated fatty acids. In
the context of rheumatic diseases, omega-3 fatty acids have
already been analyzed in animal studies and clinical trials.
Omega-3 fatty acids belong to the group of polyunsaturated
long-chain fatty acids with a specific location of their first
double bond within the carbon backbone, the ω-3 position.
These fatty acids are generally considered anti-inflammatory
as they are precursors to anti-inflammatory molecules such
as prostaglandin E3, leukotriene B5, resolvins, or protectins,
and may exert anti-inflammatory effects via other mechanisms
including disruption of lipid rafts, inhibition of proinflammatory,
and activation of anti-inflammatory transcription factors (64).
Clinical trials have shown some benefits of omega-3 fatty acids
for RA patients (64), mostly when used in conjunction or as a
supplement to conventional therapeutics. Bone loss in a post-
menopausal mouse model (mediated by ovariectomy) could be
alleviated by generation of Fat-1 transgenic mice. The Fat-1
transgene confers the capability of synthesizing omega-3 fatty
acids from omega-6 fatty acids, thus leading to increased omega-
3 fatty acid levels in vivo (65). Knocking out the enzyme
delta-5 desaturase (D5D), which is involved in the synthesis of
several polyunsaturated fatty acids including the omega-6 fatty
acid linoleic acid, improved the metabolic profile of mice and

reduced the inflammation in a vascular injury model (66). Hence,
inhibitors of D5D might prove useful in ameliorating FFA-
related joint/bone damage. Whether statins as lipid-lowering
drugs provide beneficial effects in RA (67, 68) and/or OA (69, 70)
is discussed controversially, and subchondral bone degradation
has not been part of the investigations. Transdermal drugs
that can be applied topically to affected joints might be an
alternative approach as Gutierrez et al. (53) could show enhanced
bone fracture repair in rats when treated with the transdermal
statin lovastatin.

In conclusion, we could identify a new potential mechanism
by which adipose tissue might contribute to subchondral bone
damage and specifically inflammation-driven bone destruction in
RA and OA.
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