Supporting Information

Herbst et al.

SI Materials and Methods

ELISAs. Total and *Heligmosomoides polygrus bakeri* excretorysecretory (HES)-specific antibody ELISAs were performed as previously described (1). IL-3 ELISAs were performed using the BioLegend antibodies MP2-8F8 and MP2-43D11 according to manufacturer instructions. Circulating HES was detected in the serum of infected mice by sandwich ELISA using a previously described mAb (clone 13.1 at 2 μ g/mL) (2) labeled with EZ-link NHS–LC–biotin (Thermo Scientific); the nominal concentration of circulating HES was calculated by reference to standard curve using a stock concentration of culture-derived HES.

Analysis of Helminth-Induced Cytokine Production. MesLN from infected mice were cultured in medium Iscove's modified Dubecco's medium (Lonza) plus 7% FCS (Lonza) and 5 µg/mL HES (excretory/secretary products collected from adult L5 *H. polygyrus bakeri*) for 72 h then restimulated with phorbol–12-myristat–13-acetate (PMA) (Sigma-Aldrich) and ionomycin (Sigma-Aldrich,) for 4 h with Brefeldin A (10 µg/mL) added for the final 2 h. Permeabilized cells were stained with CD4–PercP, anti–IL-4–APC (11B11), IFN– γ -FITC (XMG1.2), or anti–IL-3–PE (M12-SF8) (Biolegend). Alternatively, bone marrow or spleen cells were incubated with PMA/ionomycin for 24 h and IL-3 levels in the supernatant was determined by ELISA. For some samples, NK1.1⁺ cells were depleted by magnetic cell sorting via Nk1.1 biotin and streptavidin microbeads (MACS) (Milteny Biotech). For intracellular cytokine staining of stimu-

1. McCoy KD, et al. (2008) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. *Cell Host Microbe* 4:362–373.

lated bone marrow or spleen cells, cells were additionally incubated with monensin, permeabilzed, and stained with anti–IL-3 PE (M12-SF8) (Biolegend).

Quantification of IL-3 mRNA Expression. Basophils were purified from in vitro bone marrow cultures by MACs sorting of CD49b⁺ (DX5 Microbeads; Miltenyi Biotech) cells and incubated with 1 µg/mL IgE (TIB141) or 1 µg/mL anti-FcγRIII (24.G2, rat Ig-G2a) for 60 min at 37 °C. Antibodies were cross-linked with 1 µg/ mL antimouse IgE (6HD5) or 1 µg/mL antirat IgG2a (2A 8F4; Southern Biotech) for 60 min. Total RNA was isolated from the indicated cells using TRI reagent (Molecular Research Center) and reverse transcribed using Fast Lane kit (Qiagen). Real-time RT-PCR was performed using Brilliant SYBR Green (Stratagene) and an iCycler (Bio-Rad Laboratories). Expression was normalized according to expression of the housekeeping gene β -actin. Sequences of primers used were IL-3, 5'-TTA GCA CTG TCT CCA GAT C-3' and 5'-ACT GAT GAT GAA GGA CC-3'; and β-actin, 5'-CTT TTC ACG GTT GGC CTT AG-3 and 5'-CCC TGA AGT ACC CCA TTG AAC-3'.

Statistical Analysis. For all data, significant differences were determined between gene-deficient or treatment groups and wild-type mice by a one-tailed Student *t* test with a confidence interval of 95%. Significant *P* values are shown at *P < 0.05, **P < 0.01, or ***P < 0.001.

 Hewitson JP, et al. (2011) Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes. J Immunol 187:4764–4777.

Fig. S1. Identification of basophils in C57BL/6 and antibody-deficient mice. (*A*) Pictures represent blood smears from *H. polygyrus bakeri*-infected mice stained with Diff-Quik. The eosinophils, basophils, and neutrophils were determined on the basis of morphology and staining as illustrated. (*B*) Representative FACS plots of basophils using CD49b and IgE or FceR1 as markers for C57BL/6 or antibody-deficient mice, respectively. Backgated basophils are shown in red to indicate their forward versus side scatter properties. In all experiments, basophils from C57BL/6 mice were additionally stained for FceR1. However, as a high degree of IgE binding in infected mice was observed to interfere with the efficiency of anti-FceR1 staining, surface IgE was generally determined as a more reliable marker of FceR1 expression in these mice.

Fig. S2. B-cell-deficient mice exhibit increased levels of circulating helminth antigens. (*A*) *H. polygyrus bakeri*-specific IgM was quantified for C57BL/6 and AID^{-/-} mice following primary infection. (*B*) Presence of *H. polygyrus bakeri*-derived antigens (HES) in the serum of C57BL/6 or B-cell-deficient (μ MT^{-/-}) mice was determined by ELISA as described in *Materials and Methods*. (*C*) In a separate experiment, the presence of HES in the pooled serum of C57BL/6 (*n* = 5) was determined before and after boiling.

Fig. S3. Gating strategy of mature and progenitor basophils. Basophils from the bone marrow (A) or spleen (B) were defined by a lack of expression of the markers CD3, CD19, NK1.1, Ly6G, Sca-1, and c-kit and a positive expression for CD16/CD32⁺ and FccRI or IgE. Basophils were then further defined as progenitors or mature cells by the presence or absence of CD34. Gating strategies are shown in representative plots from *H. polygyrus bakeri*-infected C57BL/6 mice.

Fig. S4. IL-3 is not necessary for antibody production following helminth infection. (A) Total IgG1 and (B) IgE levels present in the serum of C57BL/6 or IL-3^{-/-} mice are shown for the indicated time points following primary infection with *H. polygyrus backeri*.

Fig. S5. NK1.1⁺ cells do not contribute to ex vivo IL-3 production following helminth infection. Bone marrow and spleen cells were isolated from *H. polygyrus bakeri* infected C57BL/6 mice at day 10 postinfection and restimulated with PMA/ionomycin for 24 h. Levels of IL-3 in supernatant of whole organ culture or NK1.1-depleted cell fractions were measured by ELISA.

Fig. S6. IL-4–IL-4R α interactions are required for helminth-induced antibodies and protective immunity. (*A*) Total IgG1 and IgE levels present in the serum of C57BL/6, IL-4^{-/-}, or TCR $\beta\delta^{-/-}$ mice are shown for the indicated time points following primary infection with *H. polygyrus backeri*. (*B*) Antibodies exhibiting specificity for L5 HES products were determined for C57BL/6, IL-4^{-/-}, or TCR $\beta\delta^{-/-}$ mice at day 13 following secondary infection with *H. polygyrus backeri*. (*C*) Total IgG1 and IgE levels present in the serum of C57BL/6 or IL-4R $\alpha^{-/-}$ mice are shown for the indicated time points following primary infection with *H. polygyrus backeri*. (*C*) Total IgG1 and IgE levels present in the serum of C57BL/6 or IL-4R $\alpha^{-/-}$ mice are shown for the indicated time points following primary infection with *H. polygyrus backeri*. (*D*) Antibodies exhibiting specificity for L5 HES products and (*E*) numbers of adult worms were determined for C57BL/6 or IL-4R $\alpha^{-/-}$ mice at day 13 following secondary infection with *H. polygyrus backeri*.

Fig. 57. IgG or IgE cross-linking can elicit IL-3 mRNA expression by bone-marrow-derived basophils in vitro. Relative expression of IL-3 mRNA was determined by quantitative real-time RT-PCR for bone-marrow-derived basophils stimulated by IgE or IgG cross-linking. Data are expressed as fold change of activated versus control basophils. All data are derived from one experiment and are representative of least two independent experiments.

Fig. S8. CD49⁺CD4⁺NK1.1⁻ T cells are the main ex vivo producers of IL-3 following helminth infection. Spleen cells were isolated from *H. polygyrus bakeri*infected C57BL/6 mice at day 10 postinfection, enriched for CD49⁺ cells by positive selection using DX5 MACs beads, and restimulated with PMA/ionomycin + monensin for 24 h. (A) IL-3 production was determined for cells isolated from infected or naïve mice by intracellular cytokine staining. (*B*) IL-3⁺ cells (all CD49b^{int-hi}) from infected mice were gated and their expression of CD4, NK1.1, and IgE was determined (solid lines). Shaded histograms indicate staining for CD4 and NK1.1 in IL-3^{-ve} cells or for IgE in IgE^{+ve}IL-3^{-ve} basophils.

Fig. S9. $AID^{-/-}$ mice exhibit normal T-cell cytokine production following *H. polygyrus bakeri* infection. At the indicated time points following *H. polygyrus bakeri* infection, mesenteric lymph node cells from C57BL/6 or $AID^{-/-}$ mice were cultured with L5 excretory/secretory (HES) antigens and (A) IL-4, (B) IL-3, and (C) IFN_Y production was determined by intracellular cytokine staining and flow cytometry. (D) C57BL/6 mice were subjected to primary or secondary infection with *H. polygyrus bakeri*. Secondary infected mice additionally received 10 µg of an isotype control or basophil-depleting antibody (Ba103) on days -2, 0, 5, and 8 postinfection and total IgE levels were determined by ELISA at day 12 postinfection.