77 research outputs found

    Die Rote-Armee-Fraktion

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der ersten Generation der Roten-Armee-Fraktion (RAF). Es soll aufgezeigt werden, durch welche politischen und gesellschaftlichen Einflüsse es möglich war, dass sich Menschen aus den verschiedensten Gesellschaftsschichten zu einer terroristischen Untergrundorganisation zusammenschlossen. Alles begann mit der Studentenbewegung 1968, welche den in ihren Augen falschen Umgang mit der Vergangenheit und Gegenwart der damaligen Generationen kritisierte, und endete mit einer der schwärzesten Epochen der Bundesrepublik Deutschland. Das Augenmerk liegt vor allem auf der ersten Generation der RAF, welche mit Brandanschlägen, Entführungen und Morden eine Welle des Terrors und der Angst über die Menschen brachte. Es soll aufgezeigt werden, dass es den RAF-Mitgliedern nicht bloß um die Ermordung von Personen ging, sondern um den Versuch einer Gruppe von Menschen, welche mit allen Mitteln versuchte ein ganzes Land zu verändern. Es geht jedoch nicht nur alleine um die Wandlung von Linksextremismus hin zum Terrorismus, sondern auch um die Reaktion des Staates darauf. Welche Mittel darf der Staat, als der legitimierte Träger des Gewaltmonopols, gegen Personen und Personengruppen anwenden, um mögliche Anschläge zum Schutz der Bevölkerung zu verhindern. Welche Maßnahmen darf ein Gewaltmonopol gegen gefangene Terroristen anwenden, um die eigene Stärke zu demonstrieren? Man soll sich fragen, was ist Macht? Ist Macht die Stärke des Staates unbeugsam gegen Terroristen durchzugreifen, oder ist Macht der Weg der Gefangenen, ihren eigenen Körper als Waffe gegen das System einzusetzen

    Enlarging the synthetic biology toolbox for Pichia pastoris: Golden Gate cloning and CRISPR/Cas9

    Get PDF
    State-of-the-art strain engineering techniques for the protein producing yeast host Pichia pastoris include overexpression of homologous and heterologous genes, and deletion of host genes. For this purpose overexpression vectors and gene deletion methods such as the split marker technique have been established. For metabolic and cell engineering purposes, the simultaneous overexpression of more than one gene is often needed. Previous approaches employing subsequent steps of overexpression and marker recycling were time- and labor-consuming. Therefore, efficient systems allowing multiple gene overexpression are required, that can be stably integrated into the P. pastoris genome. To this end, we developed a synthetic biology toolbox based on Golden Gate cloning to enable efficient construction of complex and versatile over-expression vectors. Up to five different expression cassettes, employing a library of promoters and terminators can be combined into one vector, and successfully integrated into the genomic DNA of P. pastoris at targeted loci in one step. Recent trends in synthetic biology, however, go into the direction of building up large and complex reaction networks. To allow for clean and unscarred genetic engineering, a CRISPR/Cas9 based method for gene insertions, deletions and replacements was developed, which paves the way for precise genomic rearrangements in P. pastoris. By using this technique precise genomic integrations were performed efficiently without integrative selection markers. The repertoire of genetic techniques developed so far, will provide a wide variety of possibilities to engineer P. pastoris. Applications for these synthetic biology tools in cell engineering of recombinant P. pastoris will be presented

    Recent advances in the structural and molecular biology of type IV secretion systems

    Get PDF
    Bacteria use type IV secretion (T4S) systems to deliver DNA and protein substrates to a diverse range of prokaryotic and eukaryotic target cells. T4S systems have great impact on human health, as they are a major source of antibiotic resistance spread among bacteria and are central to infection processes of many pathogens. Therefore, deciphering the structure and underlying translocation mechanism of T4S systems is crucial to facilitate development of new drugs. The last five years have witnessed considerable progress in unraveling the structure of T4S system subassemblies, notably that of the T4S system core complex, a large 1 MegaDalton (MDa) structure embedded in the double membrane of Gram-negative bacteria and made of 3 of the 12 T4S system components. However, the recent determination of the structure of ∼3 MDa assembly of 8 of these components has revolutionized our views of T4S system architecture and opened up new avenues of research, which are discussed in this review

    Golden Pi CS : a golden gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris

    Get PDF
    This work has been supported by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, the Government of Lower Austria and ZIT - Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG.State-of-the-art strain engineering techniques for the host Pichia pastoris (syn. Komagataella spp.) include overexpression of homologous and heterologous genes, and deletion of host genes. For metabolic and cell engineering purposes the simultaneous overexpression of more than one gene would often be required. Very recently, Golden Gate based libraries were adapted to optimize single expression cassettes for recombinant proteins in P. pastoris. However, an efficient toolbox allowing the overexpression of multiple genes at once was not available for P. pastoris. With the Golden Pi CS system, we provide a flexible modular system for advanced strain engineering in P. pastoris based on Golden Gate cloning. For this purpose, we established a wide variety of standardized genetic parts (20 promoters of different strength, 10 transcription terminators, 4 genome integration loci, 4 resistance marker cassettes). All genetic parts were characterized based on their expression strength measured by eGFP as reporter in up to four production-relevant conditions. The promoters, which are either constitutive or regulatable, cover a broad range of expression strengths in their active conditions (2-192% of the glyceraldehyde-3-phosphate dehydrogenase promoter P ), while all transcription terminators and genome integration loci led to equally high expression strength. These modular genetic parts can be readily combined in versatile order, as exemplified for the simultaneous expression of Cas9 and one or more guide-RNA expression units. Importantly, for constructing multigene constructs (vectors with more than two expression units) it is not only essential to balance the expression of the individual genes, but also to avoid repetitive homologous sequences which were otherwise shown to trigger "loop-out" of vector DNA from the P. pastoris genome. Golden Pi CS, a modular Golden Gate-derived P. pastoris cloning system, is very flexible and efficient and can be used for strain engineering of P. pastoris to accomplish pathway expression, protein production or other applications where the integration of various DNA products is required. It allows for the assembly of up to eight expression units on one plasmid with the ability to use different characterized promoters and terminators for each expression unit. Golden Pi CS vectors are available at Addgene. The online version of this article (10.1186/s12918-017-0492-3) contains supplementary material, which is available to authorized users

    Membrane and Core Periplasmic Agrobacterium tumefaciens Virulence Type IV Secretion System Components Localize to Multiple Sites around the Bacterial Perimeter during Lateral Attachment to Plant Cells

    Get PDF
    Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates

    On the zero-Hopf bifurcation of the Lotka-Volterra systems in R3

    Get PDF
    Here we study the Lotka-Volterra systems in R3, i.e. the differential systems of the form dxi/dt = xi(ri - Σ3j=1 aijxj), i = 1, 2, 3. It is known that some of these differential systems can have at least four periodic orbits bifurcating from one of their equilibrium points. Here we prove that there are some of these differential systems exhibiting at least six periodic orbits bifurcating from one of their equilibrium points. The tool for proving this result is the averaging theory of third order

    Comparative Genomics of the Conjugation Region of F-like Plasmids: Five Shades of F

    Get PDF
    The F plasmid is the foremost representative of a large group of conjugative plasmids, prevalent in Escherichia coli, and widely distributed among the Enterobacteriaceae. These plasmids are of clinical relevance, given their frequent association with virulence determinants, colicins, and antibiotic resistance genes. Originally defined by their sensitivity to certain male-specific phages, IncF plasmids share a conserved conjugative system and regulatory circuits. In order to determine whether the genetic architecture and regulation circuits are preserved among these plasmids, we analyzed the natural diversity of F-like plasmids. Using the relaxase as a phylogenetic marker, we identified 256 plasmids belonging to the IncF/ MOBF12group, present as complete DNA sequences in the NCBI database. By comparative genomics, we identified five major groups of F-like plasmids. Each shows a particular operon structure and alternate regulatory systems. Results show that the IncF/MOBF12 conjugation gene cluster conforms a diverse and ancient group, which evolved alternative regulatory schemes in its adaptation to different environments and bacterial hosts

    Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens

    Get PDF
    Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (α-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other α-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis

    Variations in Helicobacter pylori Cytotoxin-Associated Genes and Their Influence in Progression to Gastric Cancer: Implications for Prevention

    Get PDF
    Helicobacter pylori (HP) is a bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa. Persistent Hp infection often induces gastritis and is associated with the development of peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Virulent HP isolates harbor the cag (cytotoxin-associated genes) pathogenicity island (cagPAI), a 40 kb stretch of DNA that encodes components of a type IV secretion system (T4SS). This T4SS forms a pilus for the injection of virulence factors into host target cells, such as the CagA oncoprotein. We analyzed the genetic variability in cagA and other selected genes of the HP cagPAI (cagC, cagE, cagL, cagT, cagV and cag Gamma) using DNA extracted from frozen gastric biopsies or from clinical isolates. Study subjects were 95 cagA+ patients that were histologically diagnosed with chronic gastritis or gastric cancer in Venezuela and Mexico, areas with high prevalence of Hp infection. Sequencing reactions were carried out by both Sanger and next-generation pyrosequencing (454 Roche) methods. We found a total of 381 variants with unambiguous calls observed in at least 10% of the originally tested samples and reference strains. We compared the frequencies of these genetic variants between gastric cancer and chronic gastritis cases. Twenty-six SNPs (11 non-synonymous and 14 synonymous) showed statistically significant differences (P<0.05), and two SNPs, in position 1039 and 1041 of cagE, showed a highly significant association with cancer (p-value = 2.07×10−6), and the variant codon was located in the VirB3 homology domain of Agrobacterium. The results of this study may provide preliminary information to target antibiotic treatment to high-risk individuals, if effects of these variants are confirmed in further investigations

    Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone

    Get PDF
    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as ‘cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria
    corecore