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Abstract. Here we study the Lotka-Volterra systems in R3, i.e. the differential
systems of the form

dxi

dt
= xi

(
ri −

3∑

j=1

aijxj

)
, i = 1, 2, 3.

It is known that some of these differential systems can have at least four periodic8

orbits bifurcating from one of their equilibrium points. Here we prove that there are9

some of these differential systems exhibiting at least six periodic orbits bifurcating10

from one of their equilibrium points. The tool for proving this result is the averaging11

theory of third order.12
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1. Introduction and statement of results1

An equilibrium point of a 3-dimensional autonomous differential system having a2

pair of purely imaginary eigenvalues and a zero eigenvalue is a zero-Hopf equilibrium.3

A 2-parameter unfolding of a 3-dimensional autonomous differential system with4

a zero-Hopf equilibrium is a zero-Hopf bifurcation. More precisely, when the two5

parameters of the unfolding are zero we have an isolated zero-Hopf equilibrium,6

and the dynamics of the unfolding is complex and sometimes chaotic in a small7

neighborhood of this isolated equilibrium when we vary the two parameters in a8

small neighborhood of the origin, see for more details [4, 7, 8, 17, 26] and references9

quoted there.10

A Lotka-Volterra system in R3 with coordinates (x1, x2, x3) is a quadratic poly-11

nomial differential system of the form12

(1)
dxi

dt
= xi

(
ri −

3∑

j=1

aijxj

)
, i = 1, 2, 3,

where the dot denotes derivative with respect to the independent variable t, usually13

called the time, and the ri’s and the aj ’s are parameters.14

Many natural phenomena can be modeled by the Lotka–Volterra systems, start-15

ing in biology with the time evolution of conflicting species that now continuing16

being studied intensively see [9, 10, 11, 12, 13, 14, 15, 22, 25, 27, 28, 31], later on17

problems of plasma physics [18], or problems in hydrodynamics [3], ...18

It is known that Lotka-Volterra systems can exhibit zero-Hopf equlibria, see for19

instance [20]. Then a natural question is if we perturbed a Lotka-Volterra system (1)20

having a zero-Hopf equilibrium point inside the class of all Lotka-Volterra systems21

how many periodic orbits can bifurcate from such an equilibrium?22

Note that the unfolding of Lotka-Volterra system (1) with a zero-Hopf equilib-23

rium needs at least a 3-parameter family. Arnold [1] in 1973 proposed to investigate24

bifurcations of 3-parameter families with a zero–Hopf equilibrium.25

As far as we know the number of periodic orbits which can bifurcate from a zero-26

Hopf equilibrium point when this is perturbed inside the class of all Lotka-Volterra27

systems only has been studied partially in the paper [20] using averaging theory of28

second order. There the authors provided explicit conditions for the existence of29

one or two periodic orbits bifurcating from one of these equilibria.30

Here we shall use the averaging theory of third order for studying the num-31

ber of periodic orbits which can bifurcate from a zero-Hopf equilibrium point of32

a Lotka-Volterra system (1). Previous results in this direction are the following.33

First we say that an equilibrium point of a 3-dimensional autonomous differential34

system having a pair of purely imaginary eigenvalues and a non-zero eigenvalue is35

a Hopf equilibrium. The bifurcation of periodic orbits in a Hopf equilibrium of a36

Lotka-Volterra system (1) have been studied by many authors. Thus in the papers37

[16, 23, 30] the authors proved that two periodic orbits can bifurcate from a Hopf38

equilibrium of system (1). While in [5, 6, 24] it is shown that three periodic orbits39

can bifurcate from a Hopf equilibrium. Recently in [29] it is proved that four peri-40

odic orbits can bifurcate from a Hopf equilibrium of system (1). All these previous41
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results on the number of periodic orbits bifurcating from a Hopf equilibrium are1

when system (1) has all its coefficients aij and ri positive, and under this assump-2

tion in [5] it is conjectured that at least five periodic orbits can bifurcate from a3

such Hopf equilibrium, but this conjecture remains open.4

In short, until now it is known that there are Lotka-Volterra systems (1) having5

at least four periodic orbits bifurcating from one of their equilibrium points. Our6

main result is the following one.7

Theorem 1. There are Lotka-Volterra systems (1) having at least six periodic8

orbits bifurcating from a zero–Hopf equilibrium.9

We remark that those Lotka-Volterra systems (1) exhibiting a Hopf bifurcation10

with at least six periodic orbits do not have all the coefficients aij and ri positive.11

The proof of Theorem 1 is given in the next section.12

2. Proof of Theorem 113

If system (1) has a zero-Hopf equilibrium (a, b, c) with non-zero components14

without loss of generality we can consider this equilibrium at the point (1, 1, 1)15

doing the rescaling (x, y, z) → (x/a, y/b, z/c). Then every Lotka-Volterra system16

(1) having the equilibrium (1, 1, 1) can be written as17

(2)

ẋ = x
(
a11(x− 1) + a12(y − 1) + a13(z − 1)

)
,

ẏ = y
(
a21(x− 1) + a22(y − 1) + a23(z − 1)

)
,

ż = z
(
a31(x− 1) + a32(y − 1) + a33(z − 1)

)
,

where now we denote the coordinates of R3 by (x, y, z). Since we shall use the18

averaging theory of third order for studying the periodic orbits of this system we19

take the coefficients aij as follows20

aij = aij0 + εaij1 + ε2aij2 + ε3aij3,

with i and j varying in {1, 2, 3}, being ε a small parameter. Note that in the21

differential system (2) there are 37 parameters. This big number of parameters22

produce that the computations for studying the number of periodic orbits which can23

bifurcate from the equilibrium (1, 1, 1) are tedious and huge. All the computations24

of this paper has been done with the help of the algebraic manipulatormathematica.25

First we translate the equilibrium (1, 1, 1) to the origin of coordinates and system26

(2) becomes27

(3)

ẋ = (1 + x)
(
a110x+ a120y + a130z + ε(a111x+ a121y + a131z)+

ε2(a112x+ a122y + a132z) + ε3(a113x+ a123y + a133z)
)
,

ẏ = (1 + y)
(
a210x+ a220y + a230z + ε(a211x+ a221y + a231z)+

ε2(a212x+ a222y + a232z) + ε3(a213x+ a223y + a233z)
)
,

ż = (1 + z)
(
a310x+ a320y + a330z + ε(a311x+ a321y + a331z)+

ε2(a312x+ a322y + a332z) + ε3(a313x+ a323y + a333z)
)
.

Choosing the conditions28

(4) a110 = a120 = a130 = a210 = 0, a320 = −(a2220 + ω2)/a230 and a330 = −a220,
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with a230ω ̸= 0 it is easy to check that the linear part of system (3) at the origin1

has eigenvalues 0 and ±ωi. So the origin of system (3) is a zero-Hopf equilibrium,2

and consequently system (2) has a zero-Hopf equilibrium at the point (1, 1, 1). We3

remark that there are other conditions which also provide that the point (1, 1, 1)4

be a zero-Hopf equilibrium.5

In what follows we shall study the periodic orbits bifurcating from the zero-Hopf6

equilibrium (0, 0, 0) of system (3) under conditions (4).7

As we shall see the amount of computations for studying this Hopf-bifurcation8

are huge due to the big number of parameters in system (3).9

In order to study the periodic orbits bifurcating from the zero-Hopf equilibrium10

at the origin of the differential system (3) using the averaging theory of third11

order (see the appendix), we need to introduce a small parameter and take a new12

independent variable in which the differential system be periodic.13

The small parameter for the averaging theory will be the parameter ε, and we14

do the rescaling (x, y, z) = (εX, εY, εZ). Then system (3) in the new variables15

(X,Y, Z) writes16

(5)

Ẋ = ε(a111X + a121Y + a131Z) + ε2(a112X + a111X
2 + a122Y+

a121XY + a132Z + a131XZ) + ε3(a113X + a112X
2 + a123Y+

a122XY + a133Z + a132XZ) +O(ε4),

Ẏ = a220Y + a230Z + ε(a211X + a221Y + a220Y
2 + a231Z + a230Y Z)+

ε2(a212X + a222Y + a211XY + a221Y
2 + a232Z + a231Y Z)+

ε3(a213X + a223Y + a212XY + a222Y
2 + a233Z + a232Y Z) +O(ε4),

Ż = (a230a310X − a2220Y − a220a230Z − Y ω2)/a230 + ε(a230a311X+
a230a321Y + a230a331Z + a230a310XZ − a2220Y Z − a220a230Z

2−
Y Zω2)/a230 + ε2(a312X + a322Y + a332Z + a311XZ + a321Y Z+
a331Z

2) + ε3(a313X + a323Y + a333Z + a312XZ + a322Y Z+
a332Z

2) +O(ε4).

In order to simplify the computations of the averaging theory we shall write the
linear part of the differential system (5) into its real Jordan normal form doing the
linear change of variables (X,Y, Z) → (u, v, w) given by

X = w,

Y =
a230a310w

ω2
+

a230ωv − a220a230u

a2220 + ω2
,

Z = −a220a230a310w + a230ω
2u.
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Now the differential system (5) in the new variables (u, v, w) becomes1

(6)

u̇ = −ωv +
ε

ω4(a2220 + ω2)

(
(a131a

3
220a310 − a121a

2
220a230a310+

a131a220a310ω
2 − a220a230a321ω

2 + a2220a331ω
2 + a331ω

4)ω2u+
a230(a121a220a310 + a321ω

2)ω3v − (a2220 + ω2)
(
(a131a

2
220a

2
310−

a121a220a230a
2
310 − a111a220a310ω

2 − a230a310a321ω
2+

a220a310a331ω
2 − a311ω

4)w − ω5uv + a220a310ω
3vw

))
+O(ε2),

v̇ = ωu+
ε

a230ω3(a2220 + ω2)

(
(−a3220a221a230 + a4220a231−

a131a
2
220a230a310 + a121a220a

2
230a310 − a2220a

2
230a321+

a3220a230a331 − a220a221a230ω
2 + 2a2220a231ω

2 − a131a230a310ω
2+

a220a230a331ω
2 + a231ω

4)ω2u+ a230(a
2
220a221 − a121a230a310+

a220a230a321 + a221ω
2)ω3v − (a2220 + ω2)(−a2220 a221a230a310+

a3220a231a310 − a131a220a230a
2
310 + a121a

2
230a

2
310−

a220a
2
230a310a321 + a2220a230a310a331 − a211a

2
220ω

2+
a111a230a310ω

2 − a221a230a310ω
2 + a220a231a310ω

2−
a220a230a311ω

2 − a211ω
4)w − a220a

2
230ω

4u2 − a230(a
3
220+

a2220a230 + a220ω
2 − a230ω

2)ω3uv + a2230a310(a
2
220 + ω2)ω2uw+

a220a
2
230v

2ω4 + a220a230(a220 + a230)a310(a
2
220 + ω2)ωvw

)
+O(ε2),

ẇ =
ε

ω2(a2220 + ω2)

(
(a131a

2
220 − a121a220a230 + a131ω

2)ω2u+

a121a230ω
3v − (a2220 + ω2)(a131a220a310 − a121a230a310 − a111ω

2)w
)

+O(ε2).

In the computations of the previous differential system we have obtained the ex-2

pressions of u̇, v̇ and ẇ until terms of O(ε4), but here we only present them until3

terms of order O(ε2), otherwise the expression of system (6) would need several4

pages. Using an algebraic manipulator as mathematica or mapple it is relatively5

easy to repeat our computations.6

Now we write the differential system (6) in cylindrical coordinates (r, θ, w) where7

u = r cos θ and v = r sin θ, and taking θ as the new independent variable of the8

differential system defined we get the new differential system9

(7)
r′ = εF11(θ, r, w) + ε2F21(θ, r, w) + ε3F31(θ, r, w) +O(ε4),

w′ = εF12(θ, r, w) + ε2F22(θ, r, w) + ε3F32(θ, r, w) +O(ε4),

defined in in r > 0, where the prime denotes derivative with respect to the variable
θ. Here we only provide the explicit expressions of F11 = F11(θ, r, w) and F12 =
F12(θ, r, w) which are the shorter ones, but our next computations will use the
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expressions of F21, F22, F31 and F32. Thus we have

F11 =
1

a230ω5(a2220 + ω2)

(
(a230(a131a

3
220a310 − a121a

2
220a230a310+

a131a220a310ω
2 − a220a230a321ω

2 + a2220a331ω
2 + a331ω

4) cos2 θ+
(a4220a231 − a3220a221a230 − a131a

2
220a230a310 + 2a121a220a

2
230a310−

a2220a
2
230a321 + a3220a230a331 − a220a221a230ω

2 + 2a2220a231ω
2−

a131a230a310ω
2 + a2230a321ω

2 + a220a230a331ω
2 + a231ω

4)ω cos θ sin θ+
a230(a

2
220a221 − a121a230a310 + a220a230a321 + a221ω

2)ω2 sin2 θ)ω2r−
(a2220 + ω2)(a230(a131a

2
220a

2
310 − a121a220a230a

2
310 − a111a220a310ω

2−
a230a310a321ω

2 + a220a310a331ω
2 − a311ω

4) cos θ + (a3220a231a310−
a2220a221a230a310 − a131a220a230a

2
310 + a121a

2
230a

2
310 − a220a

2
230a310a321+

a2220a230a310a331 − a211a
2
220ω

2 + a111a230a310ω
2 − a221a230a310ω

2+
a220a231a310ω

2 − a220a230a311ω
2 − a211ω

4)ω sin θ])w − (a230ω(a
2
220+

a220a230 + ω2) cos2 θ sin θ + a230(a
3
220 + a2220a230 + a220ω

2 − a230ω
2)

cos θ sin2 θ − a220a
2
230ω sin3 θ)ω4r2 + (a230(a220 + a230)a310ω

3(a2220+
ω2) cos θ sin θ + a220a230(a220 + a230)a310ω

2(a2220 + ω2) sin2 θ)rw
)
,

F12 =
1

ω3(a2220 + ω2)

(
((a131a

2
220 − a121a220a230 + a131ω

2) cos θ+

a121a230ω sin θ)ω2r − (a2220 + ω2)(a131a220a310 − a121a230a310−
a111ω

2)w
)
,

We note that the differential system (7) is written in the normal form (11) for
applying the averaging theory of third order described in the appendix, where the
variables t and x of the appendix are now θ and (r, w) respectively. Computing
the averaged function of first order f1(r, w) = (f11(r, w), f12(r, w)) defined in the
appendix we get

f11(r, w) = Ar, f12(r, w) = Bw,

where

A =
(a131a220 − a121a230)a310 + (a221 + a331)ω

2 + (a220 + a230)a310a220w

2ω3
,

B =
(a121a230 − a131a220)a310 + a111ω

2

ω3
.

We look for the zeros (r∗, w∗) of f1(r, w) with r > 0, and since the unique zero of the1

function f1(r, w) is (0, 0), or a continuum of zeros if the coefficient A or B is zero,2

the averaged function of first order does not give any information on the periodic3

solutions of system (7), see the appendix. Therefore we force that the averaged4

function of first order be identically zero and we shall use the averaged functions5

of higher order to obtain information on the periodic solutions of the differential6

system (7).7

Since the coefficient of rw in the function f11(r, w) is (a220 + a230)a310a220 we8

need to consider the following three cases in order that the averaged function of9

first order be identically zero:10

Case 1: a220 = −a230,11

a331 = (a121a230a310 + a131a230a310 − a221ω
2)/ω2,12

a111 = (−a121a230a310 − a131a230a310)/ω
2.13
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Case 2: a310 = 0, a331 = −a221, a111 = 0.1

Case 3: a220 = 0,2

a331 = (a121a230a310 − a221ω
2)/ω2,3

a111 = −(a121a230a310)/ω
2.4

Case 1. Since the averaged function of first order f1(r, w) is identically zero, we
compute the averaged function of second order f2(r, w) = (f21(r, w), f22(r, w)) and
we obtain

f21(r, w) = (Cw +D)r, f22(r, w) = Ew,

where

C = −(−a121a
2
230a

2
310 − a131a

2
230a

2
310 + a121a230a310ω

2 + a131a230a310ω
2+

a221a230a310ω
2 + a230a231a310ω

2 + a211ω
4)/(2ω),

D = −(a2121a
4
230a

2
310 + 2a121a131a

4
230a

2
310 + a2131a

4
230a

2
310 − 2a121a221a

3
230a310ω

2

−2a131a221a
3
230a310ω

2 − a121a
3
230a231a310ω

2 − a131a
3
230a231a310ω

2+
a121a

3
230a310a321ω

2 + a131a
3
230a310a321ω

2 − a121a211a
2
230ω

4−
a131a211a

2
230ω

4 − a131a221a230a310ω
4 + a122a

2
230a310ω

4 + a132a
2
230a310ω

4

−a131a230a231a310ω
4 + a121a

2
230a311ω

4 + a131a
2
230a311ω

4 − a131a211ω
6−

a222a230ω
6 − a230a332ω

6)/(2a230ω
7),

E = (a2121a
4
230a

2
310 + 2a121a131a

4
230a

2
310 + a2131a

4
230a

2
310 − 2a121a221a

3
230a310ω

2

−2a131a221a
3
230a310ω

2 − a121a
3
230a231a310ω

2 − a131a
3
230a231a310ω

2+
a121a

3
230a310a321ω

2 + a131a
3
230a310a321ω

2 − a121a211a
2
230ω

4−
a131a211a

2
230ω

4 − a131a221a230a310ω
4 + a122a

2
230a310ω

4 + a132a
2
230a310ω

4

−a131a230a231a310ω
4 + a121a

2
230a311ω

4 + a131a
2
230a311ω

4 − a131a211ω
6+

a112a230ω
6)/(a230ω

7).

Again the unique zero of the averaged function of second order f2(r, w) is the (0, 0)
or a continuum of solutions in case that convenient coefficients C, D or E are zero.
Therefore the averaging theory of second order does not provide any information on
the periodic solutions of the differential system (7). Consequently we impose that
the averaged function of second order f2(r, w) be identically zero, and we obtain
that

a211 =
(
a121a

2
230a

2
310 + a131a

2
230a

2
310 − a121a230a310ω

2 − a131a230a310ω
2−

a221a230a310ω
2 − a230a231a310ω

2
)
/ω4,

a332 =
(
a2121a

2
230a310 + 2a121a131a

2
230a310 + a2131a

2
230a310 − a121a221a

2
230a310−

a131a221a
2
230a310 − a121a131a230a

2
310 − a2131a230a

2
310 + a121a

2
230a310a321+

a131a
2
230a310a321 + a121a131a310ω

2 + a2131a310ω
2 + a122a230a310ω

2+
a132a230a310ω

2 + a121a230a311ω
2 + a131a230a311ω

2 − a222ω
4
)
/ω4,

a112 =
(
− a2121a

2
230a310 − 2a121a131a

2
230a310 − a2131a

2
230a310 + a121a221a

2
230a310

+a131a221a
2
230a310 + a121a131a230a

2
310 + a2131a230a

2
310 − a121a

2
230a310a321

−a131a
2
230a310a321 − a121a131a310ω

2 − a2131a310ω
2 − a122a230a310ω

2−
a132a230a310ω

2 − a121a230a311ω
2 − a131a230a311ω

2
)
/ω4.
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We compute the averaged function of third order f3(r, w) = (f31(r, w), f32(r, w))
and we get

f31(r, w) =
a0r

4 + a1r
3 + a2r

2w + a3r
2 + a4rw + a5w

2 + a6r + a7w

384a230(a2230 + ω2)ω13r
,

f32(r, w) =
b0r

3 + b1r
2w + b2r

2 + b3rw + b4r + b5w

24a230(a2230 + ω2)2ω9
.

We do not provide the explicit expressions of the coefficients aj and bj because we1

shall need approximately twenty pages for writing them.2

Now we shall study the zeros of the function f3(r, w). Since the variable w3

appears linearly in the equation f32(r, w) = 0, we isolate it and we get w = W (r).4

Substituting w = W (r) into the equation f31(r, w) = 0, we obtain an equation in5

the variable r of the form6

(8)
n(r)

d(r)
=

c2r
2 + c3r

3 + c4r
4 + c5r

5 + c6r
6 + c7r

7 + c8r
8

(d0 + d1r + d2r2)2
= 0.

The coefficients cj and dj are polynomials in some of the coefficients of the differen-7

tial system (2), more precisely in the coefficients a113, a121, a122, a123, a131, a132, a133,8

a212, a221, a222, a223, a230, a231, a232, a310, a311, a312, a321, a322, a333, ω. We have com-9

puted the rank of the Jacobian matrix of the function (c2, c3, c4, c5, c6, c7, c8) with10

respect to the 21 previous coefficients, it is the rank of a 7× 23 matrix, and we get11

that this rank is 7. Therefore the seven coefficients of the polynomial n(r) are inde-12

pendent, and consequently we can choose them in such a way that the polynomial13

n(r) has six positive real roots. Moreover, we also can choose those coefficients in14

such a way that the resultant of the polynomials n(r) and d(r) is not zero, and15

consequently both polynomials do not have a common root. So equation (8) can16

have six positive solutions, r∗j for j = 1, 2, 3, 4, 5, 6.17

In short, we have that (r∗j ,W (r∗j )) for j = 1, 2, 3, 4, 5, 6 are six zeros of the third18

averaged function f3(r, w). These zeros can be chosen simple, i.e. the Jacobian19

of the function f3(r, w) evaluated in such zeros is not zero. Consequently by the20

averaging theory (see the appendix) the differential system (7) has six periodic21

solutions (rj(θ, ε), wj(θ, ε)) such that (rj(0, ε), wj(0, ε)) → (r∗j ,W (r∗j )) when ε → 0.22

Going back to the differential system (6) we obtain for this system six periodic
solutions (uj(t, ε), vj(t, ε), wj(t, ε)) such that

(uj(0, ε), vj(0, ε), wj(0, ε)) → (r∗j , 0,W (r∗j )),

when ε → 0. These periodic solutions provide six periodic solutions (Xj(t, ε), Yj(t, ε),
Zj(t, ε)) for the differential system (5) such that

Xj(0, ε) → W (r∗j ),

Yj(0, ε) →
a230a310W (r∗j )

ω2
−

a220a230r
∗
j

a2220 + ω2
,

Zj(0, ε) → a230ω
2r∗j − a220a230a310W (r∗j ),
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when ε → 0. Finally going back to the differential system (2) we obtain six periodic1

solutions (xj(t, ε), yj(t, ε), zj(t, ε)) such that2

(9)

xj(0, ε) = 1 + εW (r∗j ) +O(ε2),

yj(0, ε) = 1 + ε
(a230a310W (r∗j

ω2
−

a220a230r
∗
j

a2220 + ω2

)
+O(ε2),

zj(0, ε) = 1 + ε
(
a230ω

2r∗j − a220a230a310W (r∗j )
)
+O(ε2),

when ε → 0. Clearly from (9) these six periodic solutions (xj(t, ε), yj(t, ε), zj(t, ε))3

tend to the equilibrium point (1, 1, 1) of the differential system (2) when ε → 0.4

Hence they bifurcate from that zero-Hopf equilibrium at ε = 0. This completes the5

proof of Theorem 1.6

Case 2. Again since the averaged function of first order f1(r, w) is identically zero,
we compute the averaged function of second order f2(r, w) = (f21(r, w), f22(r, w))
and we obtain

f21(r, w) = (Cw +D)r, f22(r, w) = Ew,

where

C =
a220(a211a

2
220 + a211a220a230 + a220a230a311 + a2230a311 + a211ω

2)

2a230ω3
,

D =
1

2a230ω3

(
a121a211a220a230 − a131a211a

2
220 − a131a220a230a311+

a121a
2
230a311 − a131a211ω

2 − a222a230ω
2 − a230a332ω

2
)
,

E =
1

a230ω3

(
a121a211a220a230 − a131a211a

2
220 − a131a220a230a311+

a121a
2
230a311 − a131a211ω

2 + a112a230ω
2
)
.

As in the previous case the unique zero of the averaged function of second order7

f2(r, w) is the (0, 0) or a continuum of solutions in case that convenient coefficients8

C, D or E are zero. Consequently we impose that the averaged function of second9

order f2(r, w) be identically zero, but since the coefficient of rw in the function10

f21(r, w) is a product of two factors we have two consider two subcases.11

Subcase 2.1: a220 = 0. Then in order that the averaged function of second order
f2(r, w) be identically zero we take

a332 =
a121a

2
230a311 − a131a211ω

2 − a222a230ω
2

a230ω2
,

a112 =
a131a211ω

2 − a121a
2
230a311

a230ω2
.

We compute the averaged function of third order f3(r, w) = (f31(r, w), f32(r, w))12

and we get13

(10)

f31(r, w) =
a0r

3 + a1r
2 + a2rw + a3w

2 + a4r + a5w

384a2230ω
5r

,

f32(r, w) =
b0r

3 + b1r
2 + b2rw + b3r + b4w

24a2230ω
5

.
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Here the expressions of the coefficients aj ’s and bj ’s are relatively short, but we do1

not need them explicitly.2

We shall study the zeros of the function f3(r, w). Since the variable w appears
linearly in the equation f32(r, w) = 0, we isolate it and we get w = W (r). Sub-
stituting w = W (r) into the equation f31(r, w) = 0, we obtain an equation in the
variable r of the form

c2r
2 + c3r

3 + c4r
4 + c5r

5 + c6r
6

(d0 + d1r + d2r2)2
= 0.

So at most we have four positive solutions for the variable r, and consequently at3

most four zeros for the averaged function of third order f3(r, w). In any case less4

than the six obtained in Case 1.5

Subcase 2.2: a211a
2
220 + a211a220a230 + a220a230a311 + a2230a311 + a211ω

2 = 0. Then
in order that the averaged function of second order f2(r, w) be identically zero we
take

a311 = −a211a
2
220 + a211a220a230 + a211ω

2

a230(a220 + a230)
,

a332 = −a121a211 + a131a211 + a220a222 + a222a230
a220 + a230

,

a112 =
a121a211 + a131a211

a220 + a230
.

We compute the averaged function of third order f3(r, w) = (f31(r, w), f32(r, w))6

and we get again the expressions given in (10), of course the coefficients aj ’s and7

bj ’s are now different. Repeating the arguments of the previous subcase we obtain8

at most four zeros for the averaged function of third order f3(r, w).9

Case 3. Again since the averaged function of first order f1(r, w) is identically zero,
we compute the averaged function of second order f2(r, w) = (f21(r, w), f22(r, w))
and we obtain

f21(r, w) = (Cw +D)r, f22(r, w) = Ew,

where

C = −a310(a121 − a221)a230
2ω3

,

D = − 1

2a230ω5

(
a121a

3
230a310a321 − a131a221a230a310ω

2 + a122a
2
230a310ω

2+

a121a
2
230a311ω

2 − a131a211ω
4 − a222a230ω

4 − a230a332ω
4
)
,

E =
1

a230ω5

(
a121a

3
230a310a321 − a131a221a230a310ω

2 + a122a
2
230a310ω

2+

a121a
2
230a311ω

2 − a131a211ω
4 + a112a230ω

4
)
.

As in the previous case the unique zero of the averaged function of second order10

f2(r, w) is the (0, 0) or a continuum of solutions in case that convenient coefficients11

C, D or E are zero. Consequently we impose that the averaged function of second12

order f2(r, w) be identically zero, but since the coefficient of rw in the function13

f21(r, w) is a product of two factors which can be zero, namely a310(a121 − a221),14

we have two consider two subcases.15
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Subcase 3.1: a310 = 0. Then in order that the averaged function of second order
f2(r, w) be identically zero we take

a332 =
a121a

2
230a311 − a131a211ω

2 − a222a230ω
2

a230ω2
,

a112 =
−a121a

2
230a311 + a131a211ω

2

a230ω2
.

We compute the averaged function of third order f3(r, w) = (f31(r, w), f32(r, w))1

and we get again the expression given in (10), consequently at most four solutions.2

Subcase 3.2: a221 = a121. Then in order that the averaged function of second order
f2(r, w) be identically zero we take

a332 =
1

a230ω2

(
a121a

3
230a310a321 − a121a131a230a310ω

2 + a122a
2
230a310ω

2+

a121a
2
230a311ω

2 − a131a211ω
4 − a222a230ω

4
)
,

a112 =
1

a230ω4

(
a121a131a230a310ω

2 − a121a
3
230a310a321 − a122a

2
230a310ω

2−
a121a

2
230a311ω

2 + a131a211ω
4
)
.

We compute the averaged function of third order f3(r, w) = (f31(r, w), f32(r, w))
and we get

f31(r, w) =
a0r

4w + a1r
4 + a2r

2w2 + a3r
3 + a4r

2w + a5w
3 + a6r

2 + a7rw + a8w
2

384a2230ω
9r

,

f32(r, w) =
b0r

3 + b1r
2w + b2r

2 + b3rw + b4w
2 + b5r + b6w

24a2230ω
7

.

Here the explicit expressions of the coefficients aj ’s and bj ’s only should need ap-3

proximately three pages for writing them. But unfortunately in this case we do4

not know how to control the zeros (r∗, w∗) of the function f3(r, w) with r∗ > 0.5

We think that in this subcase it is possible that more than six simple zeros can be6

obtained, but for the moment this is an open problem.7

Appendix: The averaging theory of first, second and third order8

The averaging theory of third order for studying periodic orbits was developed9

[2] and in [19] at any order. It can be summarized as follows.10

Consider the differential system11

(11) ẋ = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε),

where F1, F2, F3 : R×D → R, R : R×D× (−εf , εf ) → R are continuous functions,12

T–periodic in the first variable, and D is an open subset of Rn. Assume that the13

following hypotheses (i) and (ii) hold.14

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1, DxF215

are locally Lipschitz with respect to x, and R is twice differentiable with16

respect to ε.17
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We define Fk0 : D → R for k = 1, 2, 3 as1

f1(x) =
1

T

∫ T

0

F1(s, x)ds,

f2(x) =
1

T

∫ T

0

[DxF1(s, x) · y1(s, x) + F2(s, x)] ds,

f3(x) =
1

T

∫ T

0

[1
2
y1(s, x)

T ∂2F1

∂x2
(s, x)y1(s, x) +

1

2

∂F1

∂x
(s, x)y2(s, x)

+
∂F2

∂x
(s, x)y1(s, x) + F3(s, x)

]
ds,

where2

y1(s, x) =

∫ s

0

F1(t, x)dt,

y2(s, x) =

∫ s

0

[
∂F1

∂x
(t, x)

∫ t

0

F1(r, x)dr + F2(t, x)

]
dt.

(ii) For an open and bounded set V ⊂ D and for each ε ∈ (−εf , εf )\{0}, there3

exists a ∈ V such that f1(a) + εf2(a) + ε2f3(a) = 0 and dB(f1 + εf2 +4

ε2f3, V, aε) ̸= 0 (i.e. the Brouwer degree of the function f1 + εf2 + ε2f3 at5

the point a is not zero).6

Then for |ε| > 0 sufficiently small there exists a T–periodic solution x(t, ε) of system7

(11) such that x(0, ε) → a when ε → 0.8

A sufficient condition in order that dB(f1 + εf2 + ε2f3, V, aε) ̸= 0 is that the9

Jacobian of the function f1 + εf2 + ε2f3 at a is not zero, see for details [21].10

The averaging theory of first order takes place when f1 is not identically zero.11

Therefore the zeros of f1 + εf2 + ε2f3 are mainly the zeros of f1 for ε sufficiently12

small.13

The averaging theory of second order takes place when f1 is identically zero and14

f2 is not identically zero. Then the zeros of f1 + εf2 + ε2f3 are mainly the zeros of15

f2 for ε sufficiently small.16

Finally the averaging theory of third order takes place when f1 and f2 are iden-17

tically zero and f3 is not identically zero. Therefore the zeros of f1+ εf2+ ε2f3 are18

mainly the zeros of f3 for ε sufficiently small.19
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