24 research outputs found

    Oleate induces K<sub>ATP</sub> channel-dependent hyperpolarisation in mouse hypothalamic glucose-excited neurones without altering cellular energy charge

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K(+) channels (KATP). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of KATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by KATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces KATP-dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge.This work was supported by: grants from the Wellcome Trust (grant number 068692) to M.L.J. Ashford; from Juvenile Diabetes Research Foundation (JDRF) to R.J. McCrimmon and Fellowships to C. Beall (JDRF; 3-576-2010 and Diabetes UK 13/0004647

    A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart

    Get PDF
    Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels

    Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)

    Get PDF

    Treatment and outcome of 2904 CML patients from the EUTOS population-based registry

    No full text
    The European Treatment and Outcome Study (EUTOS) population-based registry includes data of all adult patients newly diagnosed with Philadelphia chromosome-positive and/or BCR-ABL1+ chronic myeloid leukemia (CML) in 20 predefined countries and regions of Europe. Registration time ranged from 12 to 60 months between January 2008 and December 2013. Median age was 55 years and median observation time was 29 months. Eighty percent of patients were treated first line with imatinib, and 17% with a second-generation tyrosine kinase inhibitor, mostly according to European LeukemiaNet recommendations. After 12 months, complete cytogenetic remission (CCyR) and major molecular response (MMR) were achieved in 57% and 41% of patients, respectively. Patients with high EUTOS risk scores achieved CCyR and MMR significantly later than patients with low EUTOS risk. Probabilities of overall survival (OS) and progression-free survival for all patients at 12, 24 and 30 months was 97%, 94% and 92%, and 95%, 92% and 90%, respectively. The new EUTOS long-term survival score was validated: the OS of patients differed significantly between the three risk groups. The probability of dying in remission was 1% after 24 months. The current management of patients with tyrosine kinase inhibitors resulted in responses and outcomes in the range reported from clinical trials. These data from a large population-based, patient sample provide a solid benchmark for the evaluation of new treatment policies
    corecore