54 research outputs found

    Constitute: The world’s constitutions to read, search, and compare

    Get PDF
    Constitutional design and redesign is constant. Over the last 200 years, countries have replaced their constitutions an average of every 19 years and some have amended them almost yearly. A basic problem in the drafting of these documents is the search and analysis of model text deployed in other jurisdictions. Traditionally, this process has been ad hoc and the results suboptimal. As a result, drafters generally lack systematic information about the institutional options and choices available to them. In order to address this informational need, the investigators developed a web application, Constitute [online at http://www.constituteproject.org], with the use of semantic technologies. Constitute provides searchable access to the world’s constitutions using the conceptualization, texts, and data developed by the Comparative Constitutions Project. An OWL ontology represents 330 ‘‘topics’’ – e.g. right to health – with which the investigators have tagged relevant provisions of nearly all constitutions in force as of September of 2013. The tagged texts were then converted to an RDF representation using R2RML mappings and Capsenta’s Ultrawrap. The portal implements semantic search features to allow constitutional drafters to read, search, and compare the world’s constitutions. The goal of the project is to improve the efficiency and systemization of constitutional design and, thus, to support the independence and self-reliance of constitutional drafters.Governmen

    The relation between the diagonal entries and the eigenvalues of a symmetric matrix, based upon the sign pattern of its off-diagonal entries

    Get PDF
    It is known that majorization is a complete description of the relationships between the eigenvalues and diagonal entries of real symmetric matrices. However, for large subclasses of such matrices, the diagonal entries impose much greater restrictions on the eigenvalues. Motivated by previous results about Laplacian eigenvalues, we study here the additional restrictions that come from the off-diagonal sign-pattern classes of real symmetric matrices. Each class imposes additional restrictions. Several results are given for the all nonpositive and all nonnegative classes and for the third class that appears when n = 4. Complete description of the possible relationships are given in low dimensions. (C) 2012 Elsevier Inc. All rights reserved

    Nonpositive Eigenvalues of the Adjacency Matrix and Lower Bounds for Laplacian Eigenvalues

    Get PDF
    Let NPO(k)NPO(k) be the smallest number nn such that the adjacency matrix of any undirected graph with nn vertices or more has at least kk nonpositive eigenvalues. We show that NPO(k)NPO(k) is well-defined and prove that the values of NPO(k)NPO(k) for k=1,2,3,4,5k=1,2,3,4,5 are 1,3,6,10,161,3,6,10,16 respectively. In addition, we prove that for all k5k \geq 5, R(k,k+1)NPO(k)>TkR(k,k+1) \ge NPO(k) > T_k, in which R(k,k+1)R(k,k+1) is the Ramsey number for kk and k+1k+1, and TkT_k is the kthk^{th} triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kk-th largest eigenvalue is bounded from below by the NPO(k)NPO(k)-th largest degree, which generalizes some prior results.Comment: 23 pages, 12 figure

    Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation

    Get PDF
    : Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    A Systematic Replication of the Effect of Slow-Paced Contraction on HRV

    No full text
    The planned study is a systematic replication of Meehan and Shaffer's (under review) randomized-control trial that compared the effects of slow-paced contraction on HRV. The original study examined differences in time and frequency-domain metrics for participants who completed 6 contractions-per-minute of wrist-and-ankle contractions (ankles uncrossed), wrist-core-ankle contractions (ankles crossed), and sitting quietly (ankles uncrossed). Both experimental conditions produced greater HR, HR Max-HR Min, and low-frequency power than the control condition. However, this study did not control for ankle position. The planned study will control for ankle crossing by holding it constant across all three conditions. Because increased respiratory sinus arrhythmia is mainly a function of stimulation frequency (e.g., contraction rate), we do not expect holding ankle crossing as a constant to change the results of the previous study. Specifically, we expect wrist-core-ankle contraction to produce higher heart rates and HR Max-HR Min than wrist-and-ankle contraction, and both contraction conditions to produce greater HR, HR Max-HR Min, and LF power than the control condition
    corecore