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a b s t r a c t

Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected
graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k)
is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16
respectively. In addition, we prove that for all k ≥ 5, R(k, k + 1) ≥ NPO(k) > Tk, in which
R(k, k+ 1) is the Ramsey number for k and k+ 1, and Tk is the kth triangular number. This
implies new lower bounds for eigenvalues of Laplacianmatrices: the kth largest eigenvalue
is bounded from below the NPO(k)th largest degree, which generalizes some prior results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a number of vertices n, how many nonpositive eigenvalues must occur in any n − by − n adjacency matrix?
Equivalently, we may ask to bound the inertia of the adjacency matrix (the number of positive, negative, and zero
eigenvalues). The answer to this question is not only interesting on its own, but also relates to other algebraic graph theory
questions (see, for example [1,18]). Another example is the independence number of a graph, that is bounded from above
by the number of nonpositive eigenvalues [5]. Importantly to us is the close connection between the number of nonpositive
eigenvalues of the adjacency matrix and bounds for Laplacian eigenvalues through the diagonal entries of the Laplacian
matrix. This was our motivation, and is described herein.

It is well-known that majorization provides a complete description of the relationship between the possible spectra and
diagonal entries of a Hermitian matrix [11]. For certain subclasses of Hermitian matrices, however, additional inequalities
that restrict this relationship may occur. We consider the Laplacian matrix of a graph, whose eigenvalues have been widely
studied [4,7,13,14]. An example of a connection between the Laplacian eigenvalues and the degrees of the vertices in a graph
is given in the following theorem [2]:
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Theorem 1.1. Let G be a finite, simple, unweighted graph on n vertices. If G is not Ki ∪ (n− i)K1, then λi(G) ≥ di(G) + 2− i, in
which λi(G) is the ith largest Laplacian eigenvalue, and di(G) is the ith largest degree of G.

We ask what other, possibly simpler, relations exist. Specifically, we are interested in the smallest integer j such that
for any graph on m ≥ j vertices, the kth largest eigenvalue of the Laplacian is at least the jth largest degree in the graph.
There are no such relationships for weighted graphs, as shown in [3]. Interestingly, there are for unweighted graphs. Here,
we study the number of nonpositive eigenvalues of the adjacency matrix of a graph. Certain named graphs and families of
graphs, such as the Kneser graphs, Paley graphs, Petersen graph and Clebsch graph, play an important role in many of our
results. Then, using these results, we derive new lower bounds for Laplacian eigenvalues of a graph.

2. Definitions and key lemmas

Let G be a simple undirected graph on n vertices. Without loss of generality, we may label its vertices so that the i-th
vertex has degree di, and d1 ≥ d2 ≥ · · · ≥ dn. The smallest degree of a vertex in G is denoted by δ(G), and the complement
of G is denoted by G. The adjacency matrix of the graph G is denoted by A(G), and its Laplacian matrix, L(G), is defined as
L(G) = diag(d1, d2, . . . , dn) − A(G). We denote by λ1 ≥ λ2 ≥ · · · ≥ λn = 0 the eigenvalues of L(G).

The Schur complement will prove useful in investigating the eigenvalues of submatrices. Consider a block matrix
M =


M11 M12
M21 M22


such that M22 is invertible. The Schur complement [11] of M22 is given by the matrix

M/M22 = M11 − M12M−1
22 M21.

The inertia of a matrix M is the ordered triple i(M) = (i+(M), i−(M), i0(M)), in which i+(M), i−(M) and i0(M) are the
numbers (counting multiplicity) of positive, negative, and zero eigenvalues of M , respectively [11]. The following lemma
will be crucial in our use of the Schur complement.

Lemma 2.1 ([10]). For an n − by − n Hermitian block matrix M partitioned as above, i(M) = i(M22) + i(M/M22).

The set of all n− by− n real matrices is denoted byMn. Also important will be the Interlacing Theorem [11], given in our
notation as follows:

Theorem 2.2. Let A ∈ Mn be a given Hermitian matrix, and let B ∈ Mn−1 be a principal submatrix of A. Let the eigenvalues of A
and B be denoted by {λi} and {λ̂i}, respectively, and assume that they have been arranged in non-increasing order λ1 ≥ · · · ≥ λn

and λ̂1 ≥ · · · ≥ λ̂n−1. Then

λi ≥ λ̂i ≥ λi+1 for i = 1, 2, . . . , n − 1.

A simple consequence of the Interlacing Theorem is the following lemma:

Lemma 2.3. Let G be a graph on n vertices. Let Ĝ be a graph formed by adding a vertex to G and any number of edges between the
new vertex and any vertices of G. Let A and Â be the adjacencymatrices of G and Ĝ respectively. Then i+(Â)+i0(Â) ≥ i+(A)+i0(A)

and i−(Â) + i0(Â) ≥ i−(A) + i0(A).

The following result on the sum of a Hermitian and a positive semidefinite matrix is from [11].

Lemma 2.4. Let A, B ∈ Mn be Hermitian. Assume that B is positive semidefinite and that the eigenvalues of A and A + B are
arranged in non-increasing order. Then

λk(A) + λn(B) ≤ λk(A + B) for k = 1, 2, . . . , n.

Finally, wewill need certain Ramsey numbers. The Ramsey number R(m, n) is theminimumnumber of vertices such that
all graphs of order R(m, n) or more have either an independent set of size m or a complete graph of order n as an induced
subgraph. Ramsey numbers are known to exist for all (m, n), however the exact values are not known beyond R(3, 9) and
R(4, 5) [6,9,12,16].

3. The existence of bounds

Our primary question may be stated as follows: Let k be a given positive integer. Is there an integer n for which the
adjacencymatrix of any graph of order at least n has at least k nonpositive eigenvalues?We shall see that such an n exists for
each k. We denote this minimum n by NPO(k). For smaller numbers of vertices, some graphs have fewer than k nonpositive
eigenvalues. Using the concept of inertia, wemay give an alternative description forNPO(k): Let k be a given positive integer.
Is there an integer n for which the adjacency matrix A of any graph on at least n vertices satisfies i−(A) + i0(A) ≥ k? This
minimum size is just NPO(k).

We start by proving that NPO(k) exists for any k.
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Theorem 3.1. We have NPO(k) ≤ R(k, k + 1).

Proof. By the definition of Ramsey numbers, any graph of order R(k, k + 1) or greater has either an independent set of size
k or a complete graph of order k + 1 as an induced subgraph.

If G has an independent set of size k, the k − by − k zero matrix is a principle submatrix of A(G). Using the Interlacing
Theorem, it follows that A(G) has at least k nonpositive eigenvalues.

If G has the complete graph on k + 1 vertices as an induced subgraph, the matrix Jk+1 − Ik+1 is a principle submatrix of
A(G) (J is the matrix all of whose entries are 1). The eigenvalues of Jk+1 − Ik+1 are −1 of multiplicity k and k of multiplicity
1. Therefore, from the Interlacing Theorem, A(G) has at least k eigenvalues (counting multiplicities) that are smaller than or
equal to −1. In particular, A(G) has at least k nonpositive eigenvalues. �

In the following three corollaries, we use Ramsey numbers whose values have been determined in [9,6,12] and [6]
respectively.

Corollary 3.2. NPO(3) ≤ 9 = R(3, 4).

Corollary 3.3. NPO(4) ≤ 25 = R(4, 5).

Corollary 3.4. NPO(5) ≤ R(5, 6) ≤ 87.

Since the Ramsey numbers are known to exist and be finite for all parameters (as shown in [16]), Theorem 3.1 demon-
strates that for any positive integer k, NPO(k) exists. This result is limited, however, by the rapid increase in the Ramsey
numbers. While it demonstrates that such a bound exists, it is far from the actual value.

We next use generalized Ramsey numbers to get sharper bounds and start with the following lemma [17]:

Lemma 3.5. Let G be a graph on n vertices that is the complement of a disjoint union of any number of complete graphs. Then G
has at least n − 1 nonpositive eigenvalues.

This lemma has several useful consequences, but we will need the concept of generalized Ramsey numbers. Instead of
using R(k, k+1), wemay obtain an upper bound onNPO(k), by taking the smallest number r forwhich all the graphs of order
r contain as an induced subgraph, at least one of the graphs in S, with S a set of graphs that contains the complete graph
of order k + 1, the empty graph (i.e. an independent set) of order k, and other graphs that have k nonpositive eigenvalues.
Such r would be also an upper bound on NPO(k), and in many cases it may be much better than R(k, k + 1). In order to use
this concept, we start with a more general definition of Ramsey numbers, which can be found in [15]: Let G and H be two
graphs. The generalized Ramsey number R(G,H) is the minimum number of vertices such that all graphs of order at least
R(G,H) have either a subgraph that is isomorphic to G or the complement has a subgraph that is isomorphic to H . Note
that in both cases, these subgraphs are not necessarily induced subgraphs. Using this new definition, Lemma 3.5, and the
values of generalized Ramsey numbers which can be found in [15], we obtain the following bounds that are better than the
previous ones. We denote by Kn \ e the graph Kn after removing one edge:

Corollary 3.6. NPO(3) ≤ 7 = R(K4 \ e, K3).

Corollary 3.7. NPO(4) ≤ 19 = R(K5 \ e, K4).

Corollary 3.8. NPO(5) ≤ R(K6 \ e, K5) ≤ 67.

We also mention another lemma and theorem from [15], that will help us later calculate NPO(3) and NPO(5):

Lemma 3.9. R(K2,2, K1,3) = 6.

Theorem 3.10. R(K4 \ e, K5) = 16.

We now improve the prior values for certain numbers of nonpositive eigenvalues.

Lemma 3.11. NPO(1) = 1.

Proof. Let G be a graph which has at least one vertex. A(G) is hollow (i.e. has 0 diagonal) by the definition of an adjacency
matrix. Thus, the 1-by-1 principal submatrix of A(G) is 0. Therefore, from the Interlacing theorem, A(G) has at least 1
nonpositive eigenvalue. �

Lemma 3.12. NPO(2) = 3.

Proof. Weapply Theorem3.1, using the fact that R(2, 3) = 3 to get thatNPO(2) ≤ 3. In addition,K2 has only one nonpositive
eigenvalue, and therefore NPO(2) = 3. �

While the bounds for one and two nonpositive eigenvalues are simple to determine, complexity increases dramatically
beyond this point. But it does motivate the attempt to determine a bound better than that given by Ramsey numbers.
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4. Exact values for k = 3, k = 4, k = 5

We start with the following two lemmas:

Lemma 4.1. Let G be a graph on m vertices such that the adjacency matrix A(G) has at least k nonpositive eigenvalues. Then, any
graph H on p > m vertices, that has G as an induced subgraph, has at least k nonpositive eigenvalues.

Proof. This is a simple consequence of Lemma 2.3. �

Corollary 4.2. Let n be an integer such that for any graph G on n vertices, the adjacency matrix A(G) has at least k nonpositive
eigenvalues. Then for any graph H on m ≥ n vertices, the adjacency matrix A(H) has at least k nonpositive eigenvalues.

Proof. There exists a graph G on n vertices such that H has G as an induced subgraph. Since G has at least k nonpositive
eigenvalues, by Lemma 4.1, H has at least k nonpositive eigenvalues. �

The key consequence of these two lemmas is the fact that once a number n is found such that any graph on n vertices has
an adjacencymatrixwith at least k nonpositive eigenvalues, all graphs onmore vertices do, aswell. That integer nwill bound
NPO(k) from above. If we find an example of a graph on n − 1 vertices whose adjacency matrix has less than k nonpositive
eigenvalues, we may conclude that NPO(k) = n.

We may now determine the exact value of NPO(3).

Theorem 4.3. NPO(3) = 6.

Proof. First, since C5 has only 2 nonpositive eigenvalues, NPO(3) > 5. Using Corollary 4.2, it is enough to show that for any
graph G on 6 vertices, A(G) has at least 3 nonpositive eigenvalues. Let G be a graph of order 6. Using Lemma 3.9, either G has
a subgraph that is isomorphic to K2,2, or G has an induced subgraph that is isomorphic to K1 ∪ H , in which H is a graph of
order 3. In the first case, using Lemma 3.5 we get that G has an induced subgraph of order 4 with 3 nonpositive eigenvalues,
and we are done. In the second case, since NPO(2) = 3, H has at least 2 nonpositive eigenvalues, and hence K1 ∪ H has at
least three nonpositive eigenvalues, and again, we are done. �

Note that the actual value ofNPO(3) is much lower than the Ramsey bound. Before we continuewith the value ofNPO(4),
we need the following lemma:

Lemma 4.4. A graph G on 4 vertices with just 2 nonpositive eigenvalues must satisfy δ(G) = 1. The only graph G on 5 vertices
with just 2 nonpositive eigenvalues is C5.

Proof. First of all, notice that a graph on four or five vertices must have at least two nonpositive eigenvalues, since
NPO(2) = 3. Now, let G be a graph on 4 vertices. If δ(G) ≥ 2 then by Lemma 3.5, G has 3 nonpositive eigenvalues. If
δ(G) = 0, then since NPO(2) = 3, and because of the Interlacing Theorem we get that G has 3 nonpositive eigenvalues.
Therefore, a graph G on 4 vertices with just 2 nonpositive eigenvalues must satisfy δ(G) = 1. Now consider the second
statement. Let G be a graph on 5 vertices. Since NPO(2) = 3, it follows that δ(G) ≥ 2 (otherwise, by looking at the subgraph
induced by the vertex with degree 1, and the three vertices that are not connected to it we get that G must have at least
3 nonpositive eigenvalues). If the degrees of all the vertices are 2, then G = C5 and we are done. Otherwise, there exists a
vertex of degree at least 3, and using Lemma 3.5 and that K1,3, K4 \ e and K4 cannot be induced subgraphs (since otherwise
we are done) we get that G contains an induced subgraph on 4 vertices that is K3 with a pedant vertex. Since δ(G) ≥ 2, this
pedant vertex has to be connected to the remaining vertex of G, and from here it is easy to check that for all the possible
connections to the remaining vertex, we get that G has at least 3 nonpositive eigenvalues. Hence, a graph on 5 vertices with
just 2 nonpositive eigenvalues must be C5. �

Wemay now determine the value of NPO(4):

Theorem 4.5. NPO(4) = 10.

Proof. The proof is composed of two parts: NPO(4) ≤ 10, and NPO(4) > 9. We start with the first part. Using Corollary 4.2,
it is enough to show that for any graphG on 10 vertices, A(G) has at least 4 nonpositive eigenvalues. Suppose in contradiction
that there exists a graph G on 10 vertices with less than 4 nonpositive eigenvalues. We divide the proof into several cases.

1. δ(G) ≤ 3.
2. δ(G) ≥ 6.
3. δ(G) = 5.
4. δ(G) = 4.

In case 1, Let us look at a vertex v in G whose degree is at most 3. There are at least 6 vertices that are not connected to
v. Let Ĝ be a subgraph of G induced by these vertices. From Theorem 4.3, A(Ĝ) has at least 3 nonpositive eigenvalues. By
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the definition of v, Ĝ ∪ v is also an induced subgraph of G, and since v is not connected to any vertex of Ĝ, the adjacency
matrix of Ĝ∪ v has at least 4 nonpositive eigenvalues, and therefore by the Interlacing Theorem G has at least 4 nonpositive
eigenvalues, which contradicts the assumption.

In case 2, let us look at a vertex v in Gwhose degree is δ(G), and recall that δ(G) ≥ 6. If δ(G) = 9 then we are done, since
G has to be K10, and hence its adjacency matrix has 9 nonpositive eigenvalues. So assume that δ(G) < 9. In this case, there
exists a vertex u in G that is not connected to v. There are at most 3 vertices (including u) that are not connected to v, and
since the degree of u is at least 6, u and v have at least 4 common neighbors. Therefore, G has a subgraph (not necessarily
induced) isomorphic to the graph in Fig. 1.

Since the complete bipartite graph on c vertices has c − 1 nonpositive eigenvalues (which is a special case of
Lemma 3.5), and since G has less than 4 nonpositive eigenvalues, G has at least two of the following edges:


a, b


,

a, c

,

a, d


,

b, c


,

b, d


,

c, d


. If it has at least three of them, then either K2 ∪ 3K1 or 2K2 ∪ K1 is an induced subgraph

of G, and then we get a contradiction by Lemma 3.5. If G has exactly two edges among the 6 that were described above, then
without loss of generality, either 2K2 ∪ K1 or the graph in Fig. 2 is an induced subgraph of G.

In the first casewe get a contradiction. The eigenvalues of the graph in Fig. 2 are
 1
2 (1−

√
33), −1, −1, 0, 1, 1

2 (1+
√
33)


,

therefore from the Interlacing Theorem G has at least 4 nonpositive eigenvalues, which again contradicts the assumption,
and hence case 2 is impossible.

In case 3, let us look at a vertex v in G whose degree is 5. There are 4 vertices that are not connected to v. Let Ĝ be a
subgraph of G induced by these vertices. If Ĝ has at least 3 nonpositive eigenvalues, then we can continue in the same way
as in case 1 and get a contradiction. Therefore Ĝ has to have at most 2 nonpositive eigenvalues. From Lemmas 3.12 and 4.4,
Ĝ has a vertex with degree one. We denote this vertex by u. Since the degree of u in G is at least 5, u and v have at least 4
common neighbors. From here we continue in the same way as in case 2, and we get a contradiction.

The last case is case 4. Let v be a vertex of degree 4. There are 5 vertices that are not connected to v. Let Ĝ be a subgraph
of G induced by these vertices. For the same reason as before, Ĝ has to have at most 2 nonpositive eigenvalues (otherwise
we get a contradiction). Therefore, from Lemma 4.4, Ĝ is C5. Let u be some vertex in Ĝ. Since δ(G) = 4, u and v have at least
2 common neighbors. Therefore, G has a subgraph (not necessarily induced) that is isomorphic to the one in Fig. 3.

Let us look at vertices 1, 2, 4, 7, 9, 10. Since vertices 1, 2, 4 are part of Ĝ, which is an induced subgraph, and since the degree
of vertex 7 is 4, the only possible edges among the set of vertices 1, 2, 4, 7, 9, 10 are


1, 9


,

1, 10


,

2, 9


,

2, 10


,

9, 10


. If

at least one of vertices 1, 2 is connected to both 9 and 10, then the subgraph induced by this vertex and vertices 4, 7, 9, 10 has
4 nonpositive eigenvalues by Lemma 3.5, which leads us to a contradiction. On the other hand, since in all the possible cases
the subgraph induced by vertices 4, 7, 9, 10 has 3 nonpositive eigenvalues, if at least one of vertices 1, 2 is not connected
neither to 9 nor to 10, then the subgraph induced by 1, 2, 4, 7, 9, 10 has at least 4 nonpositive eigenvalues and we get a
contradiction. Therefore each of vertices 1 and 2 is connected to exactly one of the vertices 9 and 10. Hence, there are four
options up to isomorphism for the subgraph induced by 1, 2, 4, 7, 9, 10. It is easy to check that only in one of them there are
less than 4 nonpositive eigenvalues. Therefore, up to isomorphism, G has a subgraph that is isomorphic to the one in Fig. 4.

Let us look now at the subgraph induced by all the vertices except 6 and 8. There are only four optional edges that may be
added (other than those already accounted for):


3, 9


,

3, 10


,

5, 9


,

5, 10


. If all of them are added, or none of them is

added, then we are done by looking at the induced subgraph on vertices 3, 4, 5, 9, 10, and using Lemma 3.5. Therefore, up to
isomorphism, there are only 8 cases thatwe did not check yet for the subgraph ofG that is induced by all the vertices except 6
and 8. It is easy to check that only 3 of them have less than 4 nonpositive eigenvalues. These cases are illustrated in Figs. 5–7.

We start by examining Fig. 5. Since δ(G) = 4, vertex 5 is connected both to vertices 6 and 8. In addition, vertex 3 has
to be connected to at least one of vertices 6 and 8. If it is connected to only one of them, then from Lemma 4.4, either the
induced subgraph on vertices 1, 5, 9, 7, 8, or the induced subgraph on vertices 1, 5, 9, 7, 6, has to be a cycle. Both of these
cases are impossible since vertices 1 and 9 are not connected. Therefore, vertex 3 is connected both to vertices 6 and 8.
Let us look at the subgraph induced by vertices 3, 5, 7, 6, 8. Using Lemma 3.5, this subgraph has 4 nonpositive eigenvalues
(in both possible cases where either there is or there is no edge between vertices 6 and 8), and we get a contradiction.
Therefore the situation illustrated in Fig. 5 is impossible.

The next case is Fig. 6. Since δ(G) = 4, vertex 2 is connected to at least one of vertices 6 and 8. Without loss of generality,
we may assume that vertex 2 is connected to vertex 6. If the degree of vertex 2 is four, then using Lemma 4.4, we get that
the induced subgraph on vertices 4, 5, 10, 7, 8 must be a cycle, which is not the case, so we get a contradiction. Therefore,
vertex 2 is also connected to vertex 8. Now, let us look at vertex 4. If this vertex is not connected to 6 nor to 8, then in all
the possible cases, the subgraph induced by vertices 2, 4, 7, 6, 8 has 4 nonpositive eigenvalues, and we get a contradiction.
Therefore, without loss of generality, we may assume that vertex 4 is connected to vertex 6. Finally, using Lemma 3.5, we
get that the subgraph induced by vertices 6, 9, 4, 2, 7 has 4 nonpositive eigenvalues in all the possible cases (there are two
cases, either vertices 6 and 9 are connected, or not), therefore the situation that is illustrated in Fig. 6 is impossible.

The last case that we have is the situation illustrated in Fig. 7. Since δ(G) = 4, vertex 5 is connected to at least one of
vertices 6 and 8. Without loss of generality, we may assume that vertex 5 is connected to vertex 8. In addition, vertex 3 is
connected to at least one of vertices 6 and 8. If it is connected only to vertex 6, then from Lemma4.4, the subgraph induced by
vertices 1, 5, 9, 7, 8 has to be a cycle, which is not the case. Therefore, vertex 3 has to be connected to vertex 8. Nowwe have
two cases: Either vertex 3 is connected to vertex 6, or not. If they are connected, then vertex 5 has to be connected to vertex 6
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Fig. 1.

Fig. 2.

Fig. 3.

(otherwise, the subgraph induced by vertices 2, 3, 10, 7, 6 has to be a cycle, which is not the case). Now, let us look at the
subgraph induced by vertices 3, 5, 7, 6, 8. Using Lemma 3.5, we get that this subgraph has 4 nonpositive eigenvalues in all
the possible cases, which leads us to a contradiction. Therefore, vertices 3 and 6 cannot be connected, and the degree of
vertex 3 is four. From Lemma 4.4, the subgraph induced by vertices 1, 5, 9, 7, 6 has to be a cycle, and hence vertices 1 and 6
are connected, and in addition there is no edge between vertices 5 and 6 and between vertices 6 and 9. Hence, the degree of
vertex 5 is four, so the subgraph induced by vertices 2, 3, 7, 10, 6 has to be a cycle. Therefore vertices 2 and 6 are connected,
and there is no edge between vertices 6 and 10. Let us look at the subgraph induced by vertices 6, 10, 1, 7, 4. If vertices 4
and 6 are connected, then using Lemma 3.5 we get that this subgraph has 4 nonpositive eigenvalues, which leads us to a
contradiction. Hence vertices 4 and 6 are not connected. Therefore the degree of vertex 6 is four, and it must be connected
to vertex 8. So by Lemma 4.4, the subgraph induced by vertices 3, 4, 5, 9, 10 has to be a cycle, which is not the case, so we get
a contradiction. Therefore case 4 is impossible. So, in conclusion, after checking all the possible cases, we get that any graph
on 10 vertices has to have at least 4 nonpositive eigenvalues. We conclude the proof by giving two examples of graphs of
order 9 whose adjacency matrices have only 3 nonpositive eigenvalues, which means that NPO(4) > 9. The examples are
given in Fig. 8. The eigenvalues of A(G2) are

−2.4142, −2.4142, −2.0000, 0.4142, 0.4142, 0.5858, 1.0000, 1.0000, 3.4142

,

and the eigenvalues of A(G3) are
−2.4142, −2.4142, −2.1413, 0.4142, 0.4142, 0.5151, 1.0000, 1.0000, 3.6262


. �

Our next goal is to determine the exact value of NPO(5). We start with the following Lemma:

Lemma 4.6. NPO(5) > 15.

Proof. Weprove this by giving two graphs, each ofwhich has 15 vertices and only 4 nonpositive eigenvalues. Both have very
interesting structure. In addition, structure similar to that of the first graph will be presented in Section 5 as a part of a more
general bound for NPO(k). The adjacency matrices of graphs G4 and G5 (see Fig. 9), both on 15 vertices, have 4 nonpositive
eigenvalues. The eigenvalues of G4 are


−3.3028, −3.3028, −3.3028, −3.3028, 0.3028, 0.3028, 0.3028, 0.3028, 0.6277,

1, 1, 1, 1, 1, 6.3723

, and the eigenvalues of G5 are


−3.3028, −3.3028, −3.3028, −3.3028, 0.3028, 0.3028, 0.3028,

0.3028, 0.3542, 1, 1, 1, 1, 2, 5.6458

.
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Fig. 4.

Fig. 5.

Fig. 6.

We describe now the structure of each, starting with G4. First, let G be the disjoint union of the Petersen Graph and K5,
which has 15 vertices. The independence number of the Petersen Graph is four, and it has exactly five different maximal
independent sets. We obtain G4 by connecting each vertex in K5 to all vertices of one of the five independent sets, such that
each vertex in K5 is connected to a different independent set.

In order to get G5, we start with the Paley graph on 9 vertices, denoted by P(9). We construct a graph G by taking
the disjoint union of P(9) and 2K3. The independence number of P(9) is 3, and it has six different maximal independent
sets. Moreover, it is possible to label the vertices of P(9) with 1, 2, . . . , 9 so that the six maximal independent sets are
1, 5, 9


,

2, 6, 7


,

3, 4, 8


,

1, 6, 8


,

2, 4, 9


,

3, 5, 7


. Note that the first three sets are disjoint, and the last three sets

are also disjoint. We obtain G5 in the following way: take the first K3 and connect each one of its vertices to an independent
set, such that the first vertex would be connected to vertices 1, 5, 9, the next vertex would be connected to vertices 2, 6, 7,
and the last to vertices 3, 4, 8. Each vertex in the second K3 would be connected to one of the three maximal independent
sets that remain (each one of the three connected to a different independent set). �

Now we may determine the exact value of NPO(5):

Theorem 4.7. NPO(5) = 16.

Proof. We already know that NPO(5) > 15, so that it is enough to show that NPO(5) ≤ 16. Let G be a graph of order 16.
First, since NPO(4) = 10, if δ(G) < 6 then G has to have at least 5 nonpositive eigenvalues. Therefore, we may assume that
δ(G) ≥ 6. In addition, if the independence number of G is 5 or more, then by the Interlacing Theorem, G has to have at least
5 nonpositive eigenvalues. Therefore, wemay also assume that the independence number of G is smaller than 5. Using 3.10,
G has a subgraph that is isomorphic to K4 \ e. Together with the assumption that δ(G) ≥ 6 we get that G has a subgraph of
order 7 (not necessarily induced) that can be obtained from K1,6 by choosing some vertex of degree one and connecting it
to two other vertices. Let us denote this subgraph by H . From this point, the proof is completed computationally. We start
by identifying the graphs of order 7 that have a subgraph that is isomorphic to H , and whose adjacency matrix has fewer
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Fig. 7.

(a) G2 . (b) G3 .

Fig. 8.

(a) G4 . (b) G5 .

Fig. 9.

than 5 nonpositive eigenvalues. Note that if there exists a graph on 16 vertices with fewer than 5 nonpositive eigenvalues,
it has to have one of these graphs as an induced subgraph (otherwise by the Interlacing Theorem, the graph has at least 5
nonpositive eigenvalues). Our program identified 68 non-isomorphic graphs on 7 vertices with fewer than 5 nonpositive
eigenvalues and with H as a subgraph. It continued by checking all the possible options for adding a vertex to each one of
these 68 graphs (by all the possible options we mean also all the possible options for adding an edge between this vertex
and the vertices of the induced subgraphs of order 7). Using this process, we got the set of all the graphs of order 8 with
fewer than 5 nonpositive eigenvalues and with H as a subgraph. We continued the process with the same idea, each time
getting the set of all the options for graphs on n vertices (9 ≤ n ≤ 16) with less than 5 nonpositive eigenvalues and with
H as a subgraph. For this purpose, we used the high-performance computing resources of the College of William and Mary.
For graphs of order 16, the program found that there is no graph of order 16 with less than 5 nonpositive eigenvalues and
with H as a subgraph. Since all the graphs of order 16 and with fewer than 5 nonpositive eigenvalues have H as a subgraph,
we can conclude that all the graphs on 16 vertices have adjacency matrices with at least 5 nonpositive eigenvalues. �

These results are very promising. They demonstrate that the exact value that can be determined is much smaller than
the bound from Theorem 3.1 would indicate.



Z.B. Charles et al. / Discrete Mathematics 313 (2013) 1441–1451 1449

5. Lower bound for NPO(k)

Another approach to finding bounds, is to find ‘‘extreme’’ graphs, i.e. families of graphs with increasing numbers of
vertices and with a small number of nonpositive eigenvalues. We have identified a number of extreme graphs, including
a construction that can generalize to any size, which we present here. These give what appear to be very strong lower
bound for NPO(k). We start with the definition of triangular numbers. The triangular number Tn is a number that can be
represented as a triangular grid of points where the first row contains one point, and each subsequent row contains one
more point than the previous one such that there are n rows in total. Another way to define Tn is to sum all the positive
integers which are smaller than or equal to n.

We define the Kneser(k, l) graph, as usual. The graph is formed by taking


k
l


vertices, each labeled by an l-subset of

1, 2, . . . , k

. There is an edge between two vertices if the two sets associated with them do not share an element. For our

purposes, we will usually be using the Kneser(k, 2) graph, which has


k
2


vertices [8, chap. 7]. We shall denote the complete

graph on k vertices by Kk. For any vertex j of Kneser(k, 2), we define Vj to be the subset of

1, 2, . . . , k


that is associated

with j.
Now, we define theW -Graph on n =


k+1
2


vertices,W (k), by the following adjacency matrix

A(W (k)) =


W11 W12
W21 W22


where W11 = A(Kk),W22 = A(Kneser(k, 2)) and W12 is a k − by −


k
2


matrix such that:

(W12)i,j =


1 if i ∈ Vj
0 otherwise

and letW21 = W T
12. One can see that for k ≥ 4 each row ofW12 has k− 1 ones, which represent a maximal independent set

of Kneser(k, 2). If k ≥ 5 there are k different maximal independent sets of size k − 1, each represented by a different row.
This brings us to our next result:

Theorem 5.1. For all k ≥ 5, A(W (k)) has exactly k − 1 nonpositive eigenvalues.
Proof. It is known thatW11 has exactly k−1 nonpositive eigenvalues. Wewish to show that A(W (k)) has the same number
of nonpositive eigenvalues, sowe examine the Schur complement A(W (k))/W11 = W22−W21W−1

11 W12. Since by Lemma 2.1
i(W ) = i(W11) + i(A(W (k))/W11), it is enough to show that A(W (k))/W11 is positive definite.

By inspection, one can see that

W−1
11 =



−
k − 2
k − 1

1
k − 1

· · ·
1

k − 1
1

k − 1
−

k − 2
k − 1

· · ·
1

k − 1
...

. . .
...

1
k − 1

· · · −
k − 2
k − 1


.

Note that each column ofW12 has exactly two entries which are equal to 1, and all the rest are zeros. Therefore,

(W−1
11 W12)i,j =


−

k − 2
k − 1

+
1

k − 1
=

3 − k
k − 1

if i ∈ Vj

1
k − 1

+
1

k − 1
=

2
k − 1

otherwise.

By definition ofW21 we have

(W21)i,j =


1 if j ∈ Vi
0 otherwise.

Hence, the entries ofW21W−1
11 W12 ∈ M

k
2

 are as follows:

(W21W−1
11 W12)i,j =



3 − k
k − 1

+
3 − k
k − 1

=
6 − 2k
k − 1

if Vi = Vj ⇔ i = j

2
k − 1

+
2

k − 1
=

4
k − 1

if Vi ∩ Vj = ∅

3 − k
k − 1

+
2

k − 1
=

5 − k
k − 1

otherwise.
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Fig. 10. G6 , an extreme graph on 21 vertices.

Comparing this toW22 and using the definition A(W (k))/W11 = W22 − W21W−1
11 W12 we get that:


A(W (k))/W11


i,j =



2k − 6
k − 1

= 1 +
k − 5
k − 1

if Vi = Vj ⇔ i = j

1 −
4

k − 1
=

k − 5
k − 1

if Vi ∩ Vj = ∅

k − 5
k − 1

otherwise.

Therefore, A(W (k))/W11 =
k−5
k−1 J


k
2

 + I k
2

, and its eigenvalues are 1 with multiplicity


k
2


− 1, and 1 +


k
2


k−5
k−1 with

multiplicity 1. In conclusion, A(W (k))/W11 is positive definite if and only if k ≥ 5 and in this case A(W (k)) has exactly k− 1
nonpositive eigenvalues. �

This has an immediate consequence for our bounds.

Theorem 5.2. For all k ≥ 5, R(k, k + 1) ≥ NPO(k) > Tk.

Proof. By Theorem 5.1, there exists a graph, W (k), on n =


k+1
2


= Tk vertices whose adjacency matrix has only k − 1

nonpositive eigenvalues. The upper bound follows from Theorem 3.1. �

5.1. Alternate extreme graphs

On 21 vertices, (we suspect that the exact value ofNPO(6) is 22), there are 4 constructions similar to theW -graph. Instead
of taking the complete graph on six vertices, we may take any two complete graphs that have six vertices together, so we
get another three graphs on 21 vertices that have only 5 nonpositive eigenvalues.

Additionally, there is another graph of order 21, G6 (see Fig. 10), whose adjacency matrix has only 5 nonpositive eigen-
values. We can construct this graph by taking two graphs—the Clebsch Graph, which has 16 vertices, and K5, the complete
graph on 5 vertices, and connect each vertex from K5 to a specific set of 8 vertices from the Clebsch Graph (this spe-
cific set forms an induced subgraph equal to 4K2). We get the graph G6, a graph on 21 vertices that has only 5 nonpos-
itive eigenvalues, which are


−4.2361, −4.2361, −4.2361, −4.2361, −3.7346, 0.2361, 0.2361, 0.2361, 0.2361, 0.5853,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9.1493

.

6. The Laplacian matrix

Having described the results found for adjacency matrices of graphs, we now turn to the Laplacian matrix. Most of the
results found for the Laplacians are direct consequences of those found for the adjacency matrix. The Laplacian results were
our original goal.

Theorem 6.1. Let k be a positive integer, and let G a graph on m vertices, m ≥ NPO(k). Let {di} be the degrees of G, arranged
in non-increasing order and let {λi} be the eigenvalues of the Laplacian matrix L(G), arranged in non-increasing order. Then
λk ≥ dNPO(k).
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Proof. Wehave L(G) = D(G)−A(G), with A(G) is the adjacencymatrix of G andD(G) = diag

deg(v1), deg(v2) . . . deg(vm)


.

Let H be a subgraph of G induced by the NPO(k) vertices with the largest degrees. Denote by L̂ and D̂ the submatrices of L(G)

and D(G) respectively, that correspond to the vertices of H (note that L̂ is not the Laplacian matrix of H). By the Interlacing
Theorem, λk is bounded from below by the kth largest eigenvalue of L̂. Since H is of order NPO(k), the kth largest eigenvalue
of −A(H) is nonnegative. Note that L̂ = D̂ − A(H), and the result follows directly from Lemma 2.4. �

Thus we have the following results as consequences of Theorem 6.1 and earlier results on the adjacency matrix. In these
corollaries, λk shall refer to the kth-largest eigenvalue of the Laplacian matrix L(G).

Corollary 6.2. For any graph G of order m ≥ 3, λ2 ≥ d3.

Corollary 6.3. For any graph G of order m ≥ 6, λ3 ≥ d6.

Corollary 6.4. For any graph G of order m ≥ 10, λ4 ≥ d10.

Corollary 6.5. For any graph G of order m ≥ 16, λ5 ≥ d16.

In addition, we have a special corollary for regular graphs:

Corollary 6.6. Let G be a d-regular graph on n vertices, and let k be a positive integer such that NPO(k) ≤ n < NPO(k + 1).
Then L(G) has at least k eigenvalues which are equal to or greater than d.

Theorem 6.1 gives us the bound λk ≥ dNPO(k). A natural question is, whether it is possible to improve it, i.e., is there exists
a positive integer m such that m < NPO(k) and λk ≥ dm. Note that Theorem 6.1 does not imply that such integer does not
exist. For the case k ≤ 5 we have examples of Laplacian matrices that show that the bounds given are best possible bounds.

For k ≤ 3 it follows directly from looking at the Laplacian matrices of the graphs K2 and C5. For k = 4, take the graph
G3 (which appears in Fig. 8) and add four pendent vertices, each one of them is connected to one of the vertices of degree
3 in G3 (there are four such vertices). This graph has 13 vertices, 9 of them of degree 4, but the fourth largest eigenvalue is
smaller than 4, and hence this example shows that there exists a graph for which λ4 < d9. For k = 5, we start with W (5).
We add 30 pendent vertices, and connect each one of them by an edge to W (5) such that each vertex in the Kneser(5, 2)
subgraph of W (5) is connected by an edge to 3 of these pendent vertices. The resulting Laplacian matrix has λ5 ≈ 7.8438
and d15 = 8. A similar process for largerW -graphs fails to work at some point, so that it is unclear whether the relationship
on bounds given by Theorem 6.1 continues to be the best bound for Laplacian matrices beyond that point.

7. Open questions and conjectures

WedefinedNPO(k) and determined the exact value of it for k = 1, 2, 3, 4, 5. In addition,we gave upper and lower bounds
on NPO(k) for all positive integers k. The major question is: What is the exact value of NPO(k) for each k?

Moreover, the question of the bounds on Laplacian eigenvalues that motivated us remains open beyond k = 5. Does
there continue to be a precise relationship between the adjacency and Laplacian matrix? We know that the bound on the
adjacency corresponds to a bound on the Laplacian. But does the best bound on the adjacency correspond to the best bound
on the Laplacian?

Finally, there may be other sorts of relationships, beyond just k nonpositive eigenvalues. For example, for what sizes and
what values of l andm can we say that the eigenvalues of the adjacency matrix must satisfy λl + λm ≤ 0? Such statements
also translate to Laplacian eigenvalue bounds in terms of diagonal entries.
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