33 research outputs found

    Nuclear-physical methods of analysis of noble metals and rare-earth elements

    No full text
    A summary of the analysis noble and rare metals by combined methods is presented. The electrodeposition of gold at a carbon film and Rutherford backscattering was used for determination its in ores. The sorbents and particle induced X-ray emission was used for determination rare and noble metals in ores. The minimum detectable concentration for ores was 0.1 mg/g

    The dynamics of element content in patients with lung cancer during radiotherapy

    No full text
    Determination of the element contents in the biological samples (blood, serum of blood, hair) of patients with the diagnosis of lung cancer III degree is carried out during beam therapy. The method of PIXE excited by protons on the accelerator with energy 3 MeV has been used. During radiotherapy the difference in the element contents in hair of patients has not been detected. Trustworthy reduction of Fe, Cu, Mn, Ca, Sr, Rb etc is marked during treatment. The obtained results can be used as the additional test at carrying out adequate treatment in radiotherapy.Проведено визначення вмiсту мiкроелементiв в бiологiчних зразках (кров, сироватка кровi, волосся) пацiєнтiв з дiагнозом раку легенi III ступеня в процесi променевої терапiї. Використовувався метод характеристичного рентгенiвського випромiнювання, яке збуджувалось протонами прискорювача з енергiєю 3 МеВ. Протягом радiотерапiї вiдмiнностей у вмiстi елементiв у волоссях пацiєнтiв виявлено не було. У процесi лiкування вiрогiдно виявлене зменшення Fe, Cu, Mn, Ca, Sr, Rb i т.д. в кровi i сироватцi кровi. Отриманi результати можуть бути використанi як додатковий тест при проведеннi адекватної терапiї в курсi променевого лiкування.Проведено определение содержания микроэлементов в биологических образцах (кровь, сыворотка крови, волосы) пациентов с диагнозом рака легкого III степени в процессе лучевой терапии. Использован метод характеристического рентгеновского излучения, возбуждаемого протонами на ускорителе с энергией 3 МэВ. В течение радиотерапии отличий в содержании элементов в волосах пациентов обнаружено не было. В процессе лечения достоверно обнаружено уменьшение Fe, Cu, Mn, Ca, Sr, Rb и т.д. в крови и сыворотке крови. Полученные результаты могут быть использованы в качестве дополнительного теста при проведении адекватной терапии в курсе лучевого лечения

    Use of electron linac for study of fission product and actynide diffusion through glass ceramic matrices

    No full text
    The diffusion of cerium and uranium was investigated in glass ceramic matrices obtained in the gasostat. For activation of isotopes ¹⁴⁰´¹⁴²Се and ²³⁸U the brake radiation from electrons of the linear accelerator was used. The threshold of detectability of elements was reached from 5 to 15 µg/g for a sample of the area 1 cm². The coefficients of diffusion in the grain material and at grain boundaries were measured, and their values for the pressing temperature of 910°С and pressure 100~МPa were 3.5⋅10⁻⁹ cm²/s in the grain and 1.2⋅10⁻⁸ cm²/s at grain boundaries.Методом зняття шарів вивчена дифузія церію й урану в синтезовані за допомогою газостатического пресування склокерамічної матриці. Для активації ізотопів ¹⁴⁰´¹⁴²Се і ²³⁸U використовувалося гальмове випромінювання від електронів лінійного прискорювача. Межа виявлення ізотопів церію й урану становила 10⁻⁵ г/г. Були вимірювані коефіцієнти дифузії в матеріалі зерна і по границях, що при температурі пресування 910°С і тиску 100 МПа склали 3,5⋅10⁻⁹ см²/с у зерні і 1,2⋅10⁻⁸ см²/с по границях зерен.Методом снятия слоев изучена диффузия церия и урана в синтезированные посредством газостатического прессования стеклокерамические матрицы. Для активации изотопов ¹⁴⁰´¹⁴²Се и ²³⁸U использовалось тормозное излучение от электронов линейного ускорителя. Предел обнаружения изотопов церия и урана составил 10⁻⁵ г/г. Были измерены коэффициенты диффузии в материале зерна и по границам, которые при температуре прессования 910°С и давлении 100 МПа составили 3,5⋅10⁻⁹ см²/с в зерне и 1,2⋅10⁻⁸ см²/с по границам зерен

    Application of gamma activation analysis for research of Cs and I diffusion into a glassceramic matrix

    No full text
    Nuclear reactions ¹³³Cs(γ,n)¹³²Cs, ¹²⁷I(γ,n)¹²⁶I were utilized for research of Cs and I diffusion in glassceramic matrices. The glassceramic matrix was manufactured with the help of hot isostatic pressing at 910°C and pressure 100 MPa. Diffusivities of cesium and iodine in a grain and through interphase boundary at 600°C were equal 10⁻¹¹ and 7.9⋅10⁻⁹ sm²/s, accordingly. The decrease of iodine diffusivity in a grain was observed at 750°C. A method of manufacture of glassceramic matrix for long-lived storage and nuclear-waste disposal ¹²⁹I is proposed.Ядерные реакции ¹³³Cs(γ,n)¹³²Cs, ¹²⁷I(γ,n)¹²⁶I использовались для исследования диффузии Cs и I в стеклокерамической матрице. Стеклокерамическая матрица изготовлена при помощи газостатического прессования при 910°С и давлении 100 МПа. Коэффициенты диффузии цезия и йода в зерне и по границам зерен при 600°С составили 10⁻¹¹ и 7,9⋅10⁻⁹ см²/с, соответственно. Обнаружено уменьшение коэффициента диффузии йода в зерне при 750°С. Предложен способ создания матрицы для захоронения ¹²⁹I.Ядерні реакції ¹³³Cs(γ,n)¹³²Cs, ¹²⁷I(γ,n)¹²⁶I використовувалися для дослідження дифузії Cs та I у склокерамічній матриці. Склокерамічна матриця виготовлена за допомогою газостатичного пресування при 910°С і тиску 100 МПа. Коефіцієнти дифузії цезію і йоду в зерні і по границях зерен при 600° С склали 10⁻¹¹ та 7,9⋅10⁻⁹ см²/с, відповідно. Виявлено зменшення коефіцієнта дифузії йоду в зерні при 750°С. Запропоновано спосіб створення матриці для поховання ¹²⁹I

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore