285 research outputs found

    Real-Time Ventilation Measurements from Mechanically Ventilated Livestock Buildings for Emission Rate Estimations

    Get PDF
    A six-state USDA-IFAFS funded research project (Aerial Pollutant Emissions from Confined Animal Buildings, APECAB) was conducted with the purpose of determining hydrogen sulfide, ammonia, PM10, and odor emission rates from selected swine and poultry housing systems. An important aspect of emission studies is to be able to measure the mass flow rate of air through the housing system. For this research project, the decision was made to study only fan ventilated buildings due to the difficulty in estimating mass flow rates through naturally ventilated buildings. This paper highlights the various techniques used throughout the study to determine mass flow rate through fan ventilated swine and poultry housing systems

    Electoral Volatility, Political Sophistication, Trust and Efficacy

    Get PDF
    In this article we investigate voter volatility and analyze the causes and motives of switching vote intentions. We test two main sets of variables linked to volatility in literature; political sophistication and ‘political (dis)satisfaction’. Results show that voters with low levels of political efficacy tend to switch more often, both within a campaign and between elections. In the analysis we differentiate between campaign volatility and inter-election volatility and by doing so show that the dynamics of a campaign have a profound impact on volatility. The campaign period is when the lowly sophisticated switch their vote intention. Those with higher levels of interest in politics have switched their intention before the campaign has started. The data for this analysis are from the three wave PartiRep Belgian Election Study (2009)

    The long-term prediction of return to work following serious accidental injuries: A follow up study

    Get PDF
    Background Considerable indirect costs are incurred by time taken off work following accidental injuries. The aim of this study was to predict return to work following serious accidental injuries. Method 121 severely injured patients were included in the study. Complete follow-up data were available for 85 patients. Two weeks post trauma (T1), patients rated their appraisal of the injury severity and their ability to cope with the injury and its job-related consequences. Time off work was assessed at one (T2) and three years (T3) post accident. The main outcome was the number of days of sick leave taken due to the accidental injury. Results The patients' appraisals a) of the injury severity and b) of their coping abilities regarding the accidental injury and its job-related consequences were significant predictors of the number of sick-leave days taken. Injury severity (ISS), type of accident, age and gender did not contribute significantly to the prediction. Conclusions Return to work in the long term is best predicted by the patients' own appraisal of both their injury severity and the ability to cope with the accidental injury

    Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory.

    Get PDF
    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the alpha-keto-glutarate dehydrogenase catalyzed conversion of alpha-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals

    Long-term health status and trajectories of seriously injured patients: A population-based longitudinal study

    Get PDF
    Improved understanding of the quality of survival of patients is crucial in evaluating trauma care, understanding recovery patterns and timeframes, and informing healthcare, social, and disability service provision. We aimed to describe the longer-term health status of seriously injured patients, identify predictors of outcome, and establish recovery trajectories by population characteristics.A population-based, prospective cohort study using the Victorian State Trauma Registry (VSTR) was undertaken. We followed up 2,757 adult patients, injured between July 2011 and June 2012, through deaths registry linkage and telephone interview at 6-, 12-, 24-, and 36-months postinjury. The 3-level EuroQol 5 dimensions questionnaire (EQ-5D-3L) was collected, and mixed-effects regression modelling was used to identify predictors of outcome, and recovery trajectories, for the EQ-5D-3L items and summary score. Mean (SD) age of participants was 50.8 (21.6) years, and 72% were male. Twelve percent (n = 333) died during their hospital stay, 8.1% (n = 222) of patients died postdischarge, and 155 (7.0%) were known to have survived to 36-months postinjury but were lost to follow-up at all time points. The prevalence of reporting problems at 36-months postinjury was 37% for mobility, 21% for self-care, 47% for usual activities, 50% for pain/discomfort, and 41% for anxiety/depression. Continued improvement to 36-months postinjury was only present for the usual activities item; the adjusted relative risk (ARR) of reporting problems decreased from 6 to 12 (ARR 0.87, 95% CI: 0.83-0.90), 12 to 24 (ARR 0.94, 95% CI: 0.90-0.98), and 24 to 36 months (ARR 0.95, 95% CI: 0.95-0.99). The risk of reporting problems with pain or discomfort increased from 24- to 36-months postinjury (ARR 1.06, 95% CI: 1.01, 1.12). While loss to follow-up was low, there was responder bias with patients injured in intentional events, younger, and less seriously injured patients less likely to participate; therefore, these patient subgroups were underrepresented in the study findings.The prevalence of ongoing problems at 3-years postinjury is high, confirming that serious injury is frequently a chronic disorder. These findings have implications for trauma system design. Investment in interventions to reduce the longer-term impact of injuries is needed, and greater investment in primary prevention is needed
    • …
    corecore