589 research outputs found

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure

    2MASS J154043.42-510135.7: a new addition to the 5 pc population

    Full text link
    The aim of the project is to find the stars nearest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution optical and near-infrared spectroscopy with instrumentation on the ESO NTT to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. We classify this new neighbour as an M7.0±\pm0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M⊙_{\odot}. We also derive a trigonometric distance of 4.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS\,J154043.42−-510135.7 the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the ∌\sim6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase of 25\% in the number of M7--M8 dwarfs already known at distances closer than 8\,pc from our Sun. We derive a density of ρ\rho\,=\,1.9±\pm0.9×\times10−3^{-3}\,pc−3^{-3} for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. This new ultracool dwarf is among the 50 nearest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005

    Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test

    Full text link
    We present 10 m Keck spectra of the two Pleiades brown dwarfs Teide 1 and Calar 3 showing a clear detection of the 670.8 nm Li resonance line. In Teide 1, we have also obtained evidence for the presence of the subordinate line at 812.6 nm. A high Li abundance (log N(Li) >= 2.5), consistent with little if any depletion, is inferred from the observed lines. Since Pleiades brown dwarfs are unable to burn Li the significant preservation of this fragile element confirms the substellar nature of our two objects. Regardless of their age, their low luminosities and Li content place Teide 1 and Calar 3 comfortably in the genuine brown dwarf realm. Given the probable age of the Pleiades cluster, their masses are estimated at 55 +- 15 Jupiter masses.Comment: 14 pages gzipped and uuencoded. Figures are included. Also available at http://www.iac.es/. Accepted for publication in ApJ Letter

    The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects

    Full text link
    We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the cluster centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.Comment: Accepted for publication in A&A (12/04/2007). It has not been edited for language ye

    Optical Linear Polarization of Late M- and L-Type Dwarfs

    Full text link
    (Abridged). We report on the linear polarimetric observations in the Johnson I filter of 44 M6-L7.5 ultracool dwarfs (2800-1400 K). Eleven (10 L and 1 M) dwarfs appear to have significant linear polarization (P = 0.2-2.5%). We have compared the M- and L-dwarf populations finding evidence for a larger frequency of high I-band polarization in the coolest objects, supporting the presence of significant amounts of dust in L-dwarfs. The probable polarizing mechanism is related to the presence of heterogeneous dust clouds nonuniformly distributed across the visible photospheres and the asymmetric shape of the objects. In some young ultracool dwarfs, surrounding dusty disks may also yield polarization. For polarimetric detections, a trend for slightly larger polarization from L0 to L6.5 may be present in our data, suggesting changes in the distribution of the grain properties, vertical height of the clouds, metallicity, age, and rotation speed. One of our targets is the peculiar brown dwarf (BD) 2MASS J2244+20 (L6.5), which shows the largest I-band polarization degree. Its origin may lie in a surrounding dusty disk or rather large photospheric dust grains. The M7 young BD CFHT-BD-Tau 4 and the L3.5 field dwarf 2MASS J0036+18 were also observed in the Johnson R filter. Our data support the presence of a circum(sub)stellar disk around the young accreting BD. Our data also support a grain growth in the submicron regime in the visible photosphere of J0036+18 (1900 K). The polarimetric data do not obviously correlate with activity or projected rotational velocity. Three polarized early- to mid-L dwarfs display I-band light curves with amplitudes below 10 mmag.Comment: Accepted for publication in ApJ (March 2005), 35 pages, 5 figure

    Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter

    Get PDF
    The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral type. In our sample, we measured minimum binary fraction of 9.1−3.0+9.99.1^{+9.9}_{-3.0}. From the best fit of the BT-Settl models 2014 to the observed spectra, we derived the atmospheric parameters for the single objects. The BT-Settl models were able to reproduce the majority of the SEDs from our objects, and the variation of the equivalent width of the RbI (794.8 nm) and CsI (852.0 nm) lines with the spectral type. Nonetheless, these models did not reproduce the evolution of the equivalent widths of the NaI (818.3 nm and 819.5 nm) and KI (1253 nm) lines with the spectral type.Comment: Accepted for publication in MNRA

    Kinematic structure in the young Sigma Orionis association

    Get PDF
    We have used precise radial velocity measurements for a large number of candidate low-mass stars and brown dwarfs, to show that the young Sigma Ori ``cluster'' consists of two spatially superimposed components which are kinematically separated by 7 km/s in radial velocity, and which have different mean ages. We examine the relationship of these two kinematic groups to other populations in the Orion OB1 association and briefly discuss the consequence of mixed age samples for ongoing investigations of the formation and evolution of low-mass objects in this much-observed region.Comment: MNRAS Letter in pres

    Photometric Variability in the Ultracool Dwarf BRI 0021-0214: Possible Evidence for Dust Clouds

    Get PDF
    We report CCD photometric monitoring of the nonemission ultracool dwarf BRI 0021-0214 (M9.5) obtained during 10 nights in 1995 November and 4 nights in 1996 August, with CCD cameras at 1 m class telescopes on the observatories of the Canary Islands. We present differential photometry of BRI 0021-0214, and we report significant variability in the I-band light curve obtained in 1995. A periodogram analysis finds a strong peak at a period of 0.84 day. This modulation appears to be transient because it is present in the 1995 data but not in the 1996 data. We also find a possible period of 0.20 day, which appears to be present in both the 1995 and 1996 datasets. However, we do not find any periodicity close to the rotation period expected from the spectroscopic rotational broadening (< 0.14 day). BRI 0021-0214 is a very inactive object, with extremely low levels of Halpha and X-ray emission. Thus, it is unlikely that magnetically induced cool spots can account for the photometric variability. The photometric variability of BRI 0021-0214 could be explained by the presence of an active meteorology that leads to inhomogeneous clouds on the surface. The lack of photometric modulation at the expected rotational period suggests that the pattern of surface features may be more complicated than previously anticipated.Comment: Accepted for publication in ApJ. 26 pages, 13 figures include
    • 

    corecore