429 research outputs found

    High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications

    Full text link
    Superconducting technology provides most sensitive field detectors, promising implementations of qubits and high field magnets for medical imaging and for most powerful particle accelerators. Thus, with the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications rather difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. While many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clarified. Thus we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65 T. Our detailed study of the transport properties of optimally doped SmFeAs(O,F) single crystals reveals a promising combination of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities along all crystal directions. This favorable intragrain current transport in SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with sub-\mu\m^2 cross-section, with current along and perpendicular to the crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed magnetic fields. The pinning forces have been characterized by scaling the magnetically measured "peak effect"

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Search for the standard model Higgs boson at LEP

    Get PDF

    HIV and HPV infections and ocular surface squamous neoplasia: systematic review and meta-analysis.

    Get PDF
    BACKGROUND: The frequency of ocular surface squamous neoplasias (OSSNs) has been increasing in populations with a high prevalence of infection with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and infection with human papillomavirus (HPV). We aimed to quantify the association between HIV/AIDS and HPV infection and OSSN, through systematic review and meta-analysis. METHODS: The articles providing data on the association between HIV/AIDS and/or HPV infection and OSSN were identified in MEDLINE, SCOPUS and EMBASE searched up to May 2013, and through backward citation tracking. The DerSimonian and Laird method was used to compute summary relative risk (RR) estimates and 95% confidence intervals (95% CI). Heterogeneity was quantified with the I(2) statistic. RESULTS: HIV/AIDS was strongly associated with an increased risk of OSSN (summary RR=8.06, 95% CI: 5.29-12.30, I(2)=56.0%, 12 studies). The summary RR estimate for the infection with mucosal HPV subtypes was 3.13 (95% CI: 1.72-5.71, I(2)=45.6%, 16 studies). Four studies addressed the association between both cutaneous and mucosal HPV subtypes and OSSN; the summary RR estimates were 3.52 (95% CI: 1.23-10.08, I(2)=21.8%) and 1.08 (95% CI: 0.57-2.05, I(2)=0.0%), respectively. CONCLUSION: Human immunodeficiency virus infection increases the risk of OSSN by nearly eight-fold. Regarding HPV infection, only the cutaneous subtypes seem to be a risk factor

    Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites

    Get PDF
    KEY POINTS: 1. Clinical malnutrition is a heterogenous group of disorders including macronutrient deficiencies leading to body cell mass depletion and micronutrient deficiencies, and these often coexist with infectious and inflammatory processes and environmental problems. 2. There is good evidence that specific micronutrients influence immunity, particularly zinc and vitamin A. Iron may have both beneficial and deleterious effects depending on circumstances. 3. There is surprisingly slender good evidence that immunity to parasites is dependent on macronutrient intake or body composition

    Cigarette Smoking and Cognitive Function in Chinese Male Schizophrenia: A Case-Control study

    Get PDF
    Schizophrenic patients have higher smoking rates than the general population. Studies show that smoking may be a form of self-medication in an attempt to alleviate cognitive deficits in schizophrenic patients of European background. This study examined the relationships between smoking and cognitive deficits in Chinese schizophrenic patients, which have previously received little systemic study. We recruited 580 male chronic patients meeting DSM-IV criteria for schizophrenia and 175 male control subjects who were matched on age and education. The subjects completed a detailed cigarette smoking questionnaire, the Fagerstrom Test for Nicotine Dependence (FTND), and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Patients also were rated on the Positive and Negative Symptom Scale (PANSS), the Simpson and Angus Extrapyramidal Symptom Rating Scale (SAES), and the Abnormal Involuntary Movement Scale (AIMS). All five RBANS subscales except for the Visuospatial/Constructional index showed significantly lower cognitive performance for schizophrenics than normal controls. The schizophrenic smokers scored lower than the schizophrenic non-smokers on the RBANS total score and the Visuospatial/Constructional and Immediate Memory indices. Similarly, the control smokers scored lower than the control non-smokers on the RBANS total score and the Immediate Memory index . Also, the schizophrenic smokers consistently performed the poorest on the cognitive domains of the RBANS. Among the schizophrenic patients, smokers displayed significantly fewer negative symptoms than non-smokers. Using multivariate regression analysis the following variables were independently associated with the RBANS total score: years of education, PANSS negative symptom score, age at schizophrenia onset, and number of hospitalizations. Our results show that smoking is associated with significant cognitive impairment in both schizophrenic patients and normal controls, but the smokers with schizophrenia had a reduced level of negative symptoms, suggesting that the benefits of smoking for those with schizophrenia may be limited to certain aspects of a given clinical phenotype

    Systems Biology of the Clock in Neurospora crassa

    Get PDF
    A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes

    Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    Get PDF
    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells
    corecore