58 research outputs found

    A Three Dimensional Analysis of Au-Silica Core-Shell Nanoparticles Using Medium Energy Ion Scattering

    Get PDF
    The medium energy ion scattering (MEIS) facility at the IIAA Huddersfield has been used for the analysis of a monolayer of Au-silica core-shell nanoparticles deposited on Si substrate. Both spherical and rod shape particles were investigated and the spectra produced by 100 keV He+ ions scattered through angles of 90º and 125º were compared with the results of RBS-MAST [1] simulations performed on artificial 3D model cells containing the nanoparticles. The thickness of the silica shell, the diameter of the Au spheres, and the diameter and length of the Au nano-rods were determined from best fits of the measured set of MEIS spectra. In addition, the effect of ion irradiation on the silica shell and gold core was monitored by MEIS measurements in conjunction with RBS-MAST simulations. Ion bombardment was performed under largely different conditions, i.e., by 30 keV Ar+, 150 keV Fe+, or 2.8 MeV N+ ions in the dose range of 2×1015 - 2×1016 cm-2. Significant changes in the particle geometry can be observed due to ion beam-induced sputtering and recoil effects, the significance of which was estimated from full-cascade SRIM simulations. Rutherford backscattering spectrometry (RBS), Field emission scanning electron microscopy (FESEM), and Atomic Force Microscopy (AFM) techniques have been applied as complementary characterization tools to monitor the amount of gold and surface morphology on the un-irradiated and irradiated sample areas. We show that MEIS can yield spatial information on the geometrical changes of particulate systems at the nanometre scale

    Schottky Barrier Modulation of Metal/4H-SiC Junction with Thin Interface Spacer Driven by Surface Polarization Charge on 4H-SiC Substrate

    Get PDF
    The Au/Ni/Al2O3/4H-SiC junction with the Al2O3 film as a thin spacer layer was found to show the electrical characteristics of a typical rectifying Schottky contact, which is considered to be due to the leakiness of the spacer layer. The Schottky barrier of the junction was measured to be higher than an Au/Ni/4H-SiC junction with no spacer layer. It is believed that the negative surface bound charge originating from the spontaneous polarization of 4H-SiC causes the Schottky barrier increase. The use of a thin spacer layer can be an efficient experimental method to modulate Schottky barriers of metal/4H-SiC junctions.open

    Single - and double energy swift and slow heavy ion irradiated optical waveguides in Er: Tungstene-Tellurite glass and BGO for telecom applications

    Get PDF
    The fabrication of broadband amplifiers in wavelength division multiplexing (WDM) around 1.55 m, as they exhibit large stimulated cross sections and broad emission bandwidth. Bi4Ge3O12 (eultine type BGO) - well known scintillator material, also a rare-earth host material, photorefractive waveguides produced in it only using light ions in the past. Recently: MeV N+ ions and swift O5+ and C5+ ions, too*. Bi12GeO20 (sillenite type BGO) - high photoconductivity and photorefractive sensitivity in the visible and NIR good candidate for real-time holography and optical phase conjugation, photorefractive waveguides produced in it only using light ions. No previous attempts of ion beam fabrication of waveguides in it

    Optical and structural characterization of Ge clusters embedded in ZrO2

    Get PDF
    The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 ∘C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer model

    The Center for Eukaryotic Structural Genomics

    Get PDF
    The Center for Eukaryotic Structural Genomics (CESG) is a “specialized” or “technology development” center supported by the Protein Structure Initiative (PSI). CESG’s mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from Galdieria sulphuraria, 35 from Arabidopsis thaliana, 96 from Cyanidioschyzon merolae, 80 from Plasmodium falciparum, 24 from yeast, and about 25 from other eukaryotes. Notably, 30% of all structures of human proteins solved by the PSI Centers were determined at CESG. Whereas eukaryotic proteins generally are considered to be much more challenging targets than prokaryotic proteins, the technology now in place at CESG yields success rates that are comparable to those of the large production centers that work primarily on prokaryotic proteins. We describe here the technological innovations that underlie CESG’s platforms for bioinformatics and laboratory information management, target selection, protein production, and structure determination by X-ray crystallography or NMR spectroscopy

    Carcinoid Tumor in Accidental, Asymptomatic Meckel’s Diverticulum

    Get PDF
    Although Meckel’s diverticulum is the most common congenital gastrointestinal disorder, it is controversial whether asymptomatic diverticula in adults should be respected. The authors report the case of a patient who was operated due to ileus caused by adhesions and a Meckel’s diverticulum without any sign of inflammation was accidentally noted and removed. As a surprise, the pathological examination of the diverticulum proved carcinoid tumor, a neuroendocrine malignant tumor. The case raises the importance of the removal of asymptomatic Meckel’s diverticulum.Key words: Carcinoid tumor, ileus, Meckel’s diverticulu
    corecore