47 research outputs found

    Global behavior of solutions to the static spherically symmetric EYM equations

    Get PDF
    The set of all possible spherically symmetric magnetic static Einstein-Yang-Mills field equations for an arbitrary compact semi-simple gauge group GG was classified in two previous papers. Local analytic solutions near the center and a black hole horizon as well as those that are analytic and bounded near infinity were shown to exist. Some globally bounded solutions are also known to exist because they can be obtained by embedding solutions for the G=SU(2)G=SU(2) case which is well understood. Here we derive some asymptotic properties of an arbitrary global solution, namely one that exists locally near a radial value r0r_{0}, has positive mass m(r)m(r) at r0r_{0} and develops no horizon for all r>r0r>r_{0}. The set of asymptotic values of the Yang-Mills potential (in a suitable well defined gauge) is shown to be finite in the so-called regular case, but may form a more complicated real variety for models obtained from irregular rotation group actions.Comment: 43 page

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia

    Get PDF
    Background: chronic lymphocytic leukemia (CLL) primarily affects older persons who often have coexisting conditions in addition to disease-related immunosuppression and myelosuppression. We conducted an international, open-label, randomized phase 3 trial to compare two oral agents, ibrutinib and chlorambucil, in previously untreated older patients with CLL or small lymphocytic lymphoma. Methods: we randomly assigned 269 previously untreated patients who were 65 years of age or older and had CLL or small lymphocytic lymphoma to receive ibrutinib or chlorambucil. The primary end point was progression-free survival as assessed by an independent review committee. Results: the median age of the patients was 73 years. During a median follow-up period of 18.4 months, ibrutinib resulted in significantly longer progression-free survival than did chlorambucil (median, not reached vs. 18.9 months), with a risk of progression or death that was 84% lower with ibrutinib than that with chlorambucil (hazard ratio, 0.16; P<0.001). Ibrutinib significantly prolonged overall survival; the estimated survival rate at 24 months was 98% with ibrutinib versus 85% with chlorambucil, with a relative risk of death that was 84% lower in the ibrutinib group than in the chlorambucil group (hazard ratio, 0.16; P=0.001). The overall response rate was higher with ibrutinib than with chlorambucil (86% vs. 35%, P<0.001). The rates of sustained increases from baseline values in the hemoglobin and platelet levels were higher with ibrutinib. Adverse events of any grade that occurred in at least 20% of the patients receiving ibrutinib included diarrhea, fatigue, cough, and nausea; adverse events occurring in at least 20% of those receiving chlorambucil included nausea, fatigue, neutropenia, anemia, and vomiting. In the ibrutinib group, four patients had a grade 3 hemorrhage and one had a grade 4 hemorrhage. A total of 87% of the patients in the ibrutinib group are continuing to take ibrutinib. Conclusions: ibrutinib was superior to chlorambucil in previously untreated patients with CLL or small lymphocytic lymphoma, as assessed by progression-free survival, overall survival, response rate, and improvement in hematologic variables. (Funded by Pharmacyclics and others; RESONATE-2 ClinicalTrials.gov number, NCT01722487.)

    The Contribution of Coevolving Residues to the Stability of KDO8P Synthase

    Get PDF
    The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis, crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to the underlying catalytic mechanism.The multiple alignment of all known KDO8PS sequences reveals that several residue pairs coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the remaining pairs are best explained by a succession of neutral or nearly neutral covarions.Both sequence conservation and coevolution are involved in the preservation of the core structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the thermodynamic stability of the protein

    Designing a metal-binding site in the scaffold of Escherichia coli KDO8PS

    No full text
    KDO8PS (3-deoxy-d-manno-octulosonate-8-phosphate synthase) and DAH7PS (3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase) enzymes catalyse analogous condensation reactions between phosphoenolpyruvate and arabinose 5-phosphate or erythrose 4-phosphate, respectively. All known DAH7PS and some of KDO8PS enzymes (Aquifex aeolicus KDO8PS) require a metal ion for activity whereas another class of KDO8PS (including Escherichia coli KDO8PS) does not. Based on sequence alignment of all known KDO8PS and DAH7PS enzymes, we identified a single amino acid residue that might define the metal dependence of KDO8PS activity. One of the four metal-binding residues, a cysteine, is conserved only among metal-binding KDO8PS and DAH7PS enzymes and is replaced by an asparagine residue in other KDO8PS enzymes. We introduced a metal binding site into E.coli KDO8PS by a single N26C and a double M25P N26C mutation, which led to an increased k(cat) of the enzymes in the presence of activating Mn(2+) ions. The M25P N26C mutant of E.coli KDO8PS had a value of k(cat)/K(M) in the presence of Mn(2+) ions four times higher than A.aeolicus KDO8PS. KDO8PS and DAH7PS may have evolved from a common ancestor protein that required a divalent metal ion for activity. A non-metal-binding KDO8PSs may have evolved from an ancestor protein that was able to bind Mn(2+) but no longer required Mn(2+) to function and eventually lost one of metal-binding residues
    corecore