56 research outputs found

    Internet of Things Based Monitoring System of Leaks in Water Supply Networks Using Pressure-Based Model

    Get PDF
    Leaks in water distribution networks impose several impacts on economy, freshwater resources, water quality, health and safety. Fast leak detection and reparation is a key for lowering its negative impacts and associated costs with conventional detection techniques. This study has been used a pressure-based model to detect leaks events and its coordinates based on pressure and flow measurements. Pressure and flow data for systems that having leaks in their structure were analyzed and compared with data generated from non-leaking systems using EPANET software packages. An extension package of EPANET software (EpanetWaterGen) has been used as it has the advantage of its ability to better simulate leaks. The results show the ability of the model to detect leaks in a small and large water distribution networks with uncertainty level associated with low pressure change. The developed leak detection model utilizes pressure and flow sensors and enables the network managers and administrators to optimally place the sensors in a manner to increase efficiency and optimize cost. The system allows operators to detect leak location and volume of lost water, thus enabling a better and more efficient response to leaks, such that the network managers can address and respond to most urgent leaks and optimize the time end efforts of technical and maintenance personnel

    Internet of Things Based Monitoring System of Leaks in Water Supply Networks Using Pressure-Based Model

    Get PDF
    Leaks in water distribution networks impose several impacts on economy, freshwater resources, water quality, health and safety. Fast leak detection and reparation is a key for lowering its negative impacts and associated costs with conventional detection techniques. This study has been used a pressure-based model to detect leaks events and its coordinates based on pressure and flow measurements. Pressure and flow data for systems that having leaks in their structure were analyzed and compared with data generated from non-leaking systems using EPANET software packages. An extension package of EPANET software (EpanetWaterGen) has been used as it has the advantage of its ability to better simulate leaks. The results show the ability of the model to detect leaks in a small and large water distribution networks with uncertainty level associated with low pressure change. The developed leak detection model utilizes pressure and flow sensors and enables the network managers and administrators to optimally place the sensors in a manner to increase efficiency and optimize cost. The system allows operators to detect leak location and volume of lost water, thus enabling a better and more efficient response to leaks, such that the network managers can address and respond to most urgent leaks and optimize the time end efforts of technical and maintenance personnel

    Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders

    Get PDF
    With one extra dimension, current high precision electroweak data constrain the masses of the first Kaluza-Klein excitations of the Standard Model gauge fields to lie above 4\simeq 4 TeV. States with masses not much larger than this should be observable at the LHC. However, even for first excitation masses close to this lower bound, the second set of excitations will be too heavy to be produced thus eliminating the possibility of realizing the cleanest signature for KK scenarios. Previous studies of heavy ZZ' and WW' production in this mass range at the LHC have demonstrated that very little information can be obtained about their couplings to the conventional fermions given the limited available statistics and imply that the LHC cannot distinguish an ordinary ZZ' from the degenerate pair of the first KK excitations of the γ\gamma and ZZ. In this paper we discuss the capability of lepton colliders with center of mass energies significantly below the excitation mass to resolve this ambiguity. In addition, we examine how direct measurements obtained on and near the top of the first excitation peak at lepton colliders can confirm these results. For more than one extra dimension we demonstrate that it is likely that the first KK excitation is too massive to be produced at the LHC.Comment: 38 pages, 10 Figs, LaTex, comments adde

    Two Simple W' Models for the Early LHC

    Full text link
    W' gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W'_R and one containing a W'_L, which may serve as ``simplified models'' for presenting experimental results of W' searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W'_L are quite strong. However, for a W'_R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 inverse picobarns of integrated LHC luminosity are sufficient to discover the W'_R. The most promising final states are two leptons and two jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde

    Implications of texture 4 zero lepton mass matrices for U_{e3}

    Full text link
    Lepton mass matrices similar to texture 4 zero quark mass matrices, known to be quite successful in explaining the CKM phenomenology, have been considered for finding the mixing matrix element U_{e3} (\equiv s_{13}) respecting the CHOOZ constraint, with s_{12} and \Delta m_{12}^2 constrained by SNP and s_{23} and \Delta m_{23}^2 constrained by ANP. Taking charged lepton mass matrix M_l to be diagonal, we find that the ranges of s_{13} corresponding to different SNP solutions very well include the corresponding values of s_{13} found by Akhmedov et al. by considering neutrino mass matrix M_{\nu} with no texture zeros. Considering M_l and M_{\nu} both to be real and non-diagonal, s_{13} ranges for the four SNP solutions come out to be: \sim 0-0.19 (LMA), 0.038-0.093 (SMA), 0.042-0.095 (LOW), 0.038-0.096 (VO) which remain of the same order when M_l and M_{\nu} are considered to be complex and non-diagonal.Comment: 13 pages, LaTe

    Measurements of the Production, Decay and Properties of the Top Quark: A Review

    Get PDF
    With the full Tevatron Run II and early LHC data samples, the opportunity for furthering our understanding of the properties of the top quark has never been more promising. Although the current knowledge of the top quark comes largely from Tevatron measurements, the experiments at the LHC are poised to probe top-quark production and decay in unprecedented regimes. Although no current top quark measurements conclusively contradict predictions from the standard model, the precision of most measurements remains statistically limited. Additionally, some measurements, most notably the forward-backward asymmetry in top quark pair production, show tantalizing hints of beyond-the-Standard-Model dynamics. The top quark sample is growing rapidly at the LHC, with initial results now public. This review examines the current status of top quark measurements in the particular light of searching for evidence of new physics, either through direct searches for beyond the standard model phenomena or indirectly via precise measurements of standard model top quark properties

    Search for anomalous Wtb couplings in single top quark production in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present new direct constraints on a general WtbWtb interaction using data corresponding to an integrated luminosity of 5.4 fb1^{-1} collected by the D0 detector at the Tevatron ppˉp\bar{p} collider. The standard model provides a purely left-handed vector coupling at the WtbWtb vertex, while the most general, lowest dimension Lagrangian allows right-handed vector and left- or right-handed tensor couplings as well. We obtain precise limits on these anomalous couplings by comparing the data to the expectations from different assumptions on the WtbWtb coupling.Comment: Submitted to Phys. Lett.

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore