279 research outputs found

    PT-symmetric Solutions of Schrodinger Equation with position-dependent mass via Point Canonical Transformation

    Full text link
    PT-symmetric solutions of Schrodinger equation are obtained for the Scarf and generalized harmonic oscillator potentials with the position-dependent mass. A general point canonical transformation is applied by using a free parameter. Three different forms of mass distributions are used. A set of the energy eigenvalues of the bound states and corresponding wave functions for target potentials are obtained as a function of the free parameter.Comment: 13 page

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas

    Get PDF
    The purpose of radiation therapy for unresectable biliary tract cancer is to prolong survival or prolong stent patency, and to provide palliation of pain. For unresectable bile duct cancer, there are a number of studies showing that radiation therapy is superior to the best supportive care. Although radiation therapy is used in many institutions, no large randomized controlled trials (RCTs) have been performed to date and the evidence level supporting the superiority of this treatment is low. Because long-term relief of jaundice is difficult without using biliary stenting, a combination of radiation therapy and stent placement is commonly used. As radiation therapy, external-beam radiation therapy is usually performed, but combined use of intraluminal brachytherapy with external beam radiation therapy is more useful for making the treatment more effective. There are many reports demonstrating improved response rates as well as extended survival and time to recurrence achieved by this combination therapy. Despite the low level of the evidence, this combination therapy is performed at many institutions. It is expected that multiinstitutional RCTs will be carried out. Unresectable gallbladder cancer with a large focus is usually extensive, and normal organs with high radio sensitivity exist contiguously with it. Therefore, only limited anticancer effects are to be expected from external beam radiation therapy for this type of cancer. The number of reports on ampullary cancer is small and the role of radiation therapy in this cancer has not been established. Combination treatment for ampullary cancer consists of either a single use of intraoperative radiation therapy, postoperative external beam radiation therapy or intraluminal brachytherapy, or a combination of two or three of these therapies. Intraoperative radiation therapy is superior in that it enables precise irradiation to the target site, thereby protecting adjacent highly radiosensitive normal tissues from irradiation. There are reports showing extended survival, although not significant, in groups undergoing intraoperative or postoperative radiation therapy compared with groups without radiation therapy. To date, there are no reports of large RCTs focusing on the significance of radiation therapy as a postoperative adjuvant treatment, so its usefulness as a postoperative adjuvant treatment is not proven. An alternative treatment is photodynamic therapy. There is an RCT demonstrating that, in unresectable bile duct cancer, extended survival and improved quality of life (QOL) have been achieved through a combination of photodynamic therapy and biliary stenting, compared with biliary stenting alone. Results from large RCTs are desired

    A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas : the PERSEUS experience

    Get PDF
    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.peer-reviewe

    The Large Hadron-Electron Collider at the HL-LHC

    Get PDF
    The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.Peer reviewe

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • 

    corecore