85 research outputs found

    A Unified Quantum NOT Gate

    Full text link
    We study the feasibility of implementing a quantum NOT gate (approximate) when the quantum state lies between two latitudes on the Bloch's sphere and present an analytical formula for the optimized 1-to-MM quantum NOT gate. Our result generalizes previous results concerning quantum NOT gate for a quantum state distributed uniformly on the whole Bloch sphere as well as the phase covariant quantum state. We have also shown that such 1-to-MM optimized NOT gate can be implemented using a sequential generation scheme via matrix product states (MPS)

    The Bayes factor and its implementation in JASP: A practical primer

    Get PDF
    Statistical inference plays a critical role in modern scientific research, however, the dominant method for statistical inference in science, null hypothesis significance testing (NHST), is often misunderstood and misused, which leads to unreproducible findings. To address this issue, researchers propose to adopt the Bayes factor as an alternative to NHST. The Bayes factor is a principled Bayesian tool for model selection and hypothesis testing, and can be interpreted as the strength for both the null hypothesis H0 and the alternative hypothesis H1 based on the current data. Compared to NHST, the Bayes factor has the following advantages: it quantifies the evidence that the data provide for both the H0 and the H1, it is not “violently biased” against H0, it allows one to monitor the evidence as the data accumulate, and it does not depend on sampling plans. Importantly, the recently developed open software JASP makes the calculation of Bayes factor accessible for most researchers in psychology, as we demonstrated for the t-test. Given these advantages, adopting the Bayes factor will improve psychological researchers’ statistical inferences. Nevertheless, to make the analysis more reproducible, researchers should keep their data analysis transparent and open

    Diagnostically Challenging Epithelial Odontogenic Tumors: A Selective Review of 7 Jawbone Lesions

    Get PDF
    Considerable variation in the clinicopathologic presentation of epithelial odontogenic tumors can sometimes be confusing and increase the chance of misdiagnosis. Seven diagnostically challenging jawbone lesions are described. There were 2 cases of mistaken identity in our ameloblastoma file. One unicystic type, initially diagnosed and treated as a lateral periodontal cyst, showed destructive recurrence 6 years postoperatively. The other globulomaxillary lesion was managed under the erroneous diagnosis of adenomatoid odontogenic tumor and recurred 4 times over an 11-year period. This tumor was found in retrospect to be consistent with an adenoid ameloblastoma with dentinoid. The diagnosis of cystic squamous odontogenic tumor (SOT) occurring as a radicular lesion of an impacted lower third molar was one of exclusion. Of two unsuspected keratocystic odontogenic tumors, one depicted deceptive features of pericoronitis, while the other case has long been in our files with the diagnosis of globulomaxillary SOT. Two cases of primary intraosseous squamous cell carcinoma appeared benign clinically and exhibited unexpected findings; an impacted third molar began to erupt in association with the growth of carcinoma and another periradicular carcinoma showed dentinoid formation. Cases selectively reviewed in this article present challenging problems which require clinical and radiographic correlation to avoid potential diagnostic pitfalls

    Digital Gene Expression Analysis Based on Integrated De Novo Transcriptome Assembly of Sweet Potato [Ipomoea batatas (L.) Lam.]

    Get PDF
    Background: Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. Methodology/Principal Findings: Illumina paired-end (PE) RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts ($100 bp), which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE) tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified

    Inter-MAR Association Contributes to Transcriptionally Active Looping Events in Human β-globin Gene Cluster

    Get PDF
    Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the β-globin gene cluster, it is unclear that how these MAR elements are involved in regulating β-globin genes expression. Here, we report the identification of a new MAR element at the LCR(locus control region) of human β-globin gene cluster and the detection of the inter-MAR association within the β-globin gene cluster. Also, we demonstrate that SATB1, a protein factor that has been implicated in the formation of network like higher order chromatin structures at some gene loci, takes part in β-globin specific inter-MAR association through binding the specific MARs. Knocking down of SATB1 obviously reduces the binding of SATB1 to the MARs and diminishes the frequency of the inter-MAR association. As a result, the ACH establishment and the α-like globin genes and β-like globin genes expressions are affected either. In summary, our results suggest that SATB1 is a regulatory factor of hemoglobin genes, especially the early differentiation genes at least through affecting the higher order chromatin structure

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity

    Get PDF
    The present work was largely supported by a grant from the US National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (R01HL118305). The full list of acknowledgments appears in the Supplementary Notes 3 and 4.Peer reviewedPublisher PD

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore