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Multi-ancestry study of blood lipid levels identifies
four loci interacting with physical activity
Tuomas O. Kilpeläinen et al.#

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle

factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting

with physical activity, we performed genome-wide analyses of circulating HDL cholesterol,

LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African,

Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an

additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2,

that are associated with circulating lipid levels through interaction with physical activity;

higher levels of physical activity enhance the HDL cholesterol-increasing effects of the

CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the

CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function

and lipid metabolism. Our results elucidate the role of physical activity interactions in the

genetic contribution to blood lipid levels.
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C irculating levels of blood lipids are strongly linked to the
risk of atherosclerotic cardiovascular disease. Regular
physical activity (PA) improves blood lipid profile by

increasing the levels of high-density lipoprotein cholesterol
(HDL-C) and decreasing the levels of low-density lipoprotein
cholesterol (LDL-C) and triglycerides (TG)1. However, there is
individual variation in the response of blood lipids to PA, and
twin studies suggest that some of this variation may be due to
genetic differences2. The genes responsible for this variability
remain unknown.

More than 500 genetic loci have been found to be associated
with blood levels of HDL-C, LDL-C, or TG in published genome-
wide association studies (GWAS)3–12. At present, it is not known
whether any of these main effect associations are modified by PA.
Understanding whether the impact of lipid loci can be modified
by PA is important because it may give additional insight into
biological mechanisms and identify subpopulations in whom PA
is particularly beneficial.

Here, we report results from a genome-wide meta-analysis of
gene–PA interactions on blood lipid levels in up to 120,979 adults
of European, African, Asian, Hispanic, or Brazilian ancestry, with
follow-up of suggestive associations in an additional 131,012
individuals. We show that four loci, in/near CLASP1, LHX1,
SNTA1, and CNTNAP2, are associated with circulating lipid levels
through interaction with PA. None of these four loci have been
identified in published main effect GWAS of lipid levels. The
CLASP1, LHX1, and SNTA1 regions harbor genes linked to
muscle function and lipid metabolism. Our results elucidate the
role of PA interactions in the genetic contribution to blood lipid
levels.

Results
Genome-wide interaction analyses in up to 250,564 indivi-
duals. We assessed effects of gene–PA interactions on serum
HDL-C, LDL-C, and TG levels in 86 cohorts participating in the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Gene-Lifestyle Interactions Working Group13. PA
was harmonized across participating studies by categorizing it
into a dichotomous variable. The participants were defined as
inactive if their reported weekly energy expenditure in moderate-
to-vigorous intensity leisure-time or commuting PA was less than
225 metabolic equivalent (MET) minutes per week (corre-
sponding to approximately 1 h of moderate-intensity PA), while
all other participants were defined as physically active (Supple-
mentary Data 1).

The analyses were performed in two stages. Stage 1 consisted of
genome-wide meta-analyses of linear regression results from 42
cohorts, including 120,979 individuals of European [n= 84,902],
African [n= 20,487], Asian [n= 6403], Hispanic [n= 4749], or
Brazilian [n= 4438] ancestry (Supplementary Tables 1 and 2;
Supplementary Data 2; Supplementary Note 1). All variants that
reached two-sided P < 1 × 10−6 in the Stage 1 multi-ancestry
meta-analyses or ancestry-specific meta-analyses were taken
forward to linear regression analyses in Stage 2, which included
44 cohorts and 131,012 individuals of European [n= 107,617],
African [n= 5384], Asian [n= 6590], or Hispanic [n= 11,421]
ancestry (Supplementary Tables 3 and 4; Supplementary Data 3;
Supplementary Note 2). The summary statistics from Stage 1 and
Stage 2 were subsequently meta-analyzed to identify lipid loci
whose effects are modified by PA.

We identified lipid loci interacting with PA by three different
approaches applied to the meta-analysis of Stage 1 and Stage 2:
(i) we screened for genome-wide significant SNP × PA-interac-
tion effects (PINT < 5 × 10−8); (ii) we screened for genome-wide
significant 2 degree of freedom (2df) joint test of SNP main

effect and SNP × PA interaction14 (PJOINT < 5 × 10−8); and
(iii) we screened all previously known lipid loci3–12 for significant
SNP × PA-interaction effects, Bonferroni-correcting for the
number of independent variants tested (r2 < 0.1 within 1 Mb
distance; PINT= 0.05/501= 1.0 × 10−4).

PA modifies the effect of four loci on lipid levels. Three
novel loci (>1Mb distance and r2 < 0.1 with any previously
identified lipid locus) were identified: in CLASP1 (rs2862183,
PINT= 8 × 10−9), near LHX1 (rs295849, PINT= 3 × 10−8), and in
SNTA1 (rs141588480, PINT= 2 × 10−8), which showed a genome-
wide significant SNP × PA interaction on HDL-C in all ancestries
combined (Table 1, Figs. 1–4). Higher levels of PA enhanced the
HDL cholesterol-increasing effects of the CLASP1, LHX1, and
SNTA1 loci. A novel locus in CNTNAP2 (rs190748049) was
genome-wide significant in the joint test of SNP main effect and
SNP × PA interaction (PJOINT= 4 × 10−8) and showed moderate
evidence of SNP × PA interaction (PINT= 2 × 10−6) in the meta-
analysis of LDL-C in all ancestries combined (Table 1, Fig. 5). The
LDL-C-increasing effect of the CNTNAP2 locus was attenuated in
the physically active group as compared to the inactive group.
None of these four loci have been identified in previous main
effect GWAS of lipid levels.

No interaction between known main effect lipid loci and PA.
Of the previously known 260 main effect loci for HDL-C, 202 for
LDL-C, and 185 for TG3–12, none reached the Bonferroni-
corrected threshold (two-sided PINT= 1.0 × 10−4) for SNP × PA
interaction alone (Supplementary Data 4-6). We also found no
significant interaction between a combined score of all published
European-ancestry loci for HDL-C, LDL-C, or TG with PA
(Supplementary Datas 7–9) using our European-ancestry sum-
mary results (two-sided PHDL-C= 0.14, PLDL-C= 0.77, and PTG=
0.86, respectively), suggesting that the beneficial effect of PA on
lipid levels may be independent of genetic risk15.

Potential functional roles of the loci interacting with PA. While
the mechanisms underlying the beneficial effect of PA on circu-
lating lipid levels are not fully understood, it is thought that the
changes in plasma lipid levels are primarily due to an improve-
ment in the ability of skeletal muscle to utilize lipids for energy
due to enhanced enzymatic activities in the muscle16,17. Of the
four loci we found to interact with PA, three, in CLASP1, near
LHX1, and in SNTA1, harbor genes that may play a role in muscle
function18,19 and lipid metabolism20,21.

The lead variant rs2862183 (minor allele frequency (MAF)
22%) in the CLASP1 locus which interacts with PA on HDL-C
levels is an intronic SNP in CLASP1 that encodes a microtubule-
associated protein (Fig. 2). The rs2862183 SNP is associated with
CLASP1 expression in esophagus muscularis (P= 3 × 10−5) and is
in strong linkage disequilibrium (r2 > 0.79) with rs13403769
variant that shows the strongest association with CLASP1
expression in the region (P= 7 × 10−7). Another potent causal
candidate gene in this locus is the nearby GLI2 gene which has
been found to play a role in skeletal myogenesis18 and the
conversion of glucose to lipids in mouse adipose tissue20 by
inhibiting hedgehog signaling.

The rs295849 (MAF 38%) variant near LHX1 interacts with PA
on HDL-C levels. However, the more likely causal candidate gene
in this locus is acetyl-CoA carboxylase (ACACA), which plays a
crucial role in fatty acid metabolism21 (Fig. 3). Rare acetyl-CoA
carboxylase deficiency has been linked to hypotonic myopathy,
severe brain damage, and poor growth22.

The lead variant in the SNTA1 locus (rs141588480) interacts
with PA on HDL-C and is an insertion only found in individuals
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of African (MAF 6%) or Hispanic (MAF 1%) ancestry. The
rs141588480 insertion is in the SNTA1 gene that encodes the
syntrophin alpha 1 protein, located at the neuromuscular
junction and altering intracellular calcium ion levels in muscle
tissue (Fig. 4). Snta1-null mice exhibit differences in muscle
regeneration after a cardiotoxin injection19. Two weeks following
the injection into mouse tibialis anterior, the muscle showed
hypertrophy, decreased contractile force, and neuromuscular
junction dysfunction. Furthermore, exercise endurance of the
mice was impaired in the early phase of muscle regeneration19. In
humans, SNTA1 mutations have been linked to the long-QT
syndrome23.

The fourth locus interacting with PA is CNTNAP2, with the
lead variant (rs190748049) intronic and no other genes nearby
(Fig. 5). The rs190748049 variant is most common in African-
ancestry (MAF 8%), less frequent in European-ancestry (MAF
2%), and absent in Asian- and Hispanic-ancestry populations.
The protein coded by the CNTNAP2 gene, contactin-associated
protein like-2, is a member of the neurexin protein family. The
protein is located at the juxtaparanodes of myelinated axons
where it may have an important role in the differentiation of the
axon into specific functional subdomains. Mice with a Cntnap2
knockout are used as an animal model of autism and show altered
phasic inhibition and a decreased number of interneurons24.
Human CNTNAP2 variants have been associated with risk of
autism and related behavioral disorders25.

Joint test of SNP main effect and SNP × PA interaction. We
found 101 additional loci that reached genome-wide significance
in the 2df joint test of SNP main effect and SNP × PA interaction

on HDL-C, LDL-C, or TG. However, none of these loci showed
evidence of SNP × PA interaction (PINT > 0.001) (Supplementary
Data 10). All 101 main effect-driven loci have been identified in
previous GWAS of lipid levels3–12.

Discussion
In this genome-wide study of up to 250,564 adults from diverse
ancestries, we found evidence of interaction with PA for four loci,
in/near CLASP1, LHX1, SNTA1, and CNTNAP2. Higher levels of
PA enhanced the HDL cholesterol-increasing effects of CLASP1,
LHX1, and SNTA1 loci and attenuated the LDL cholesterol-
increasing effect of the CNTNAP2 locus. None of these four loci
have been identified in previous main effect GWAS for lipid
levels3–12.

The loci in/near CLASP1, LHX1, and SNTA1 harbor genes
linked to muscle function18,19 and lipid metabolism20,21. More
specifically, the GLI2 gene within the CLASP1 locus has been
found to play a role in myogenesis18 as well as in the conversion
of glucose to lipids in adipose tissue20; the ACACA gene within
the LHX1 locus plays a crucial role in fatty acid metabolism21 and
has been connected to hypotonic myopathy22; and the SNTA1
gene is linked to muscle regeneration19. These functions may
relate to differences in the ability of skeletal muscle to use lipids as
an energy source, which may modify the beneficial impact of PA
on blood lipid levels16,17.

The inclusion of diverse ancestries in the present meta-analyses
allowed us to identify two loci that would have been missed in
meta-analyses of European-ancestry individuals alone. In parti-
cular, the lead variant (rs141588480) in the SNTA1 locus is only
polymorphic in African and Hispanic ancestries, and the lead
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Fig. 1 Genome-wide results for interaction with physical activity on HDL cholesterol levels. The P values are two-sided and were obtained by a meta-analysis
of linear regression model results (n up to 250,564). Three loci, in/near CLASP1, LHX1, and SNTA1, reached genome-wide significance (P < 5 × 10−8) as
indicated in the plot

Table 1 Lipid loci identified through interaction with physical activity (PINT < 5 × 10−8) or through joint test for SNP main effect
and SNP × physical activity interaction (PJOINT < 5 × 10−8)

Trait SNP Chr:Pos Gene EA/OA EAF N inactive N active BetaINT seINT PINT PJOINT
Loci identified through interaction with physical activity
HDL-C rs2862183 2:122415398 CLASP1 T/C 0.22 76,674 154,118 0.014 0.003 7.5E−9 3.6E−7

HDL-C rs295849 17:35161748 LHX1 T/G 0.38 78,288 160,924 0.009 0.002 2.7E−8 6.8E−7

HDL-C rs141588480 20:32013913 SNTA1 Ins/Del 0.95 8,694 18,585 0.054 0.010 2.0E−8 6.1E−7

Loci identified through joint test for SNP main effect and SNP × physical activity interaction
LDL-C rs190748049 7:146418260 CNTNAP2 C/T 0.95 14,912 28,715 −7.2 1.5 1.6E−6 4.2E−8

All loci were identified in the meta-analyses of all ancestries combined. HDL-C was natural logarithmically transformed, whereas LDL-C was not transformed. The P values are two-sided and were
obtained using a meta-analysis of linear regression model results. EA effect allele, EAF effect allele frequency, OA other allele, betaINT effect size for interaction with physical activity (=the change in
logarithmically transformed HDL-C or untransformed LDL-C levels in the active group as compared to the inactive group per each effect allele), seINT standard error for interaction with physical activity
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variant (rs190748049) in the CNTNAP2 locus is four times more
frequent in African-ancestry than in European-ancestry. Our
findings highlight the importance of multi-ancestry investigations
of gene-lifestyle interactions to identify novel loci.

We did not find additional novel loci when jointly testing for
SNP main effect and interaction with PA. While 101 loci reached

genome-wide significance in the joint test on HDL-C, LDL-C, or
TG, all of these loci have been identified in previous GWAS of
lipid levels3–12, and none of them showed evidence of SNP × PA
interaction. The 2df joint test bolsters the power to detect novel
loci when both main and an interaction effect are present14. The
lack of novel loci identified by the 2df test suggests that the loci
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showing the strongest SNP × PA interaction on lipid levels are not
the same loci that show a strong main effect on lipid levels.

In summary, we identified four loci containing SNPs that
enhance the beneficial effect of PA on lipid levels. The identifi-
cation of the SNTA1 and CNTNAP2 loci interacting with PA was

made possible by the inclusion of diverse ancestries in the ana-
lyses. The gene regions that harbor loci interacting with PA
involve pathways targeting muscle function and lipid metabolism.
Our findings elucidate the role and underlying mechanisms of PA
interactions in the genetic regulation of blood lipid levels.
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Methods
Study design. The present study collected summary data from 86 participating
cohorts and no individual-level data were exchanged. For each of the participating
cohorts, the appropriate ethics review board approved the data collection and all
participants provided informed consent.

We included men and women 18–80 years of age and of European, African,
Asian, Hispanic, or Brazilian ancestry. The meta-analyses were performed in two
stages13. Stage 1 meta-analyses included 42 studies with a total of 120,979
individuals of European (n= 84,902), African (n= 20,487), Asian (n= 6403),
Hispanic (n= 4749), or Brazilian ancestry (n= 4438) (Supplementary Table 1;
Supplementary Data 2; Supplementary Note 1). Stage 2 meta-analyses included
44 studies with a total of 131,012 individuals of European (n= 107,617), African
(n= 5384), Asian (n= 6590), or Hispanic (n= 11,421) ancestry (Supplementary
Table 3; Supplementary Data 3; Supplementary Note 2). Studies participating in
Stage 1 meta-analyses carried out genome-wide analyses, whereas studies
participating in Stage 2 only performed analyses for 17,711 variants that reached P
< 10−6 in the Stage 1 meta-analyses and were observed in at least two different
Stage 1 studies with a pooled sample size > 4000. The Stage 1 and Stage 2 meta-
analyses were performed in all ancestries combined and in each ancestry separately.

Outcome traits: LDL-C, HDL-C, and TG. The levels of LDL-C were either directly
assayed or derived using the Friedewald equation (if TG ≤ 400 mg dl−1 and fast-
ing ≥ 8 h). We adjusted LDL-C levels for lipid-lowering drug use if statin use was
reported or if unspecified lipid-lowering drug use was listed after 1994, when statin
use became common. For directly assayed LDL-C, we divided the LDL-C value by
0.7. If LDL-C was derived using the Friedewald equation, we first adjusted total
cholesterol for statin use (total cholesterol divided by 0.8) before the usual calcu-
lation. If study samples were from individuals who were nonfasting, we did not
include either TG or calculated LDL-C in the present analyses. The HDL-C and TG
variables were natural log-transformed, while LDL-C was not transformed.

PA variable. The participating studies used a variety of ways to assess and quantify
PA (Supplementary Data 1). To harmonize the PA variable across all participating
studies, we coded a dichotomous variable, inactive vs. active, that could be applied
in a relatively uniform way in all studies, and that would be congruent with
previous findings on SNP × PA interactions26–28 and the relationship between PA
and disease outcomes29. Inactive individuals were defined as those with <225 MET-
min per week of moderate-to-vigorous leisure-time or commuting PA (n= 84,495;
34% of all participants) (Supplementary Data 1). We considered all other parti-
cipants as physically active. In studies where MET-min per week measures of PA
were not available, we defined inactive individuals as those engaging in ≤1 h/week
of moderate-intensity leisure-time PA or commuting PA. In studies with PA
measures that were not comparable to either MET-min or hours/week of PA, we
defined the inactive group using a percentage cut-off, where individuals in the
lowest 25% of PA levels were defined as inactive and all other individuals as active.

Genotyping and imputation. Genotyping was performed by each participating
study using Illumina or Affymetrix arrays. Imputation was conducted on the
cosmopolitan reference panel from the 1000 Genomes Project Phase I Integrated
Release Version 3 Haplotypes (2010–2011 data freeze, 2012-03-14 haplotypes).
Only autosomal variants were considered. Specific details of each participating
study’s genotyping platform and imputation software are described in Supple-
mentary Tables 2 and 4.

Quality control. The participating studies excluded variants with MAF < 1%. We
performed QC for all study-specific results using the EasyQC package in R30. For
each study-specific results file, we filtered out genetic variants for which the pro-
duct of minor allele count (MAC) in the inactive and active strata and imputation
quality [min(MACINACTIVE,MACACTIVE) × imputation quality] did not reach 20.
This removed unstable study-specific results that reflected small sample size, low
MAC, or low-imputation quality. In addition, we excluded all variants with
imputation quality measure <0.5. To identify issues with relatedness, we examined
QQ plots and genomic control inflation lambdas in each study-specific results file
as well as in the meta-analysis results files. To identify issues with allele frequencies,
we compared the allele frequencies in each study file against ancestry-specific allele
frequencies in the 1000 Genomes reference panel. To identify issues with trait
transformation, we plotted the median standard error against the maximal sample
size in each study. The summary statistics for all beta-coefficients, standard errors,
and P values were visually compared to observe discrepancies. Any issues that were
found during the QC were resolved by contacting the analysts from the partici-
pating studies. Additional details about QC in the context of interactions, including
examples, may be found elsewhere13.

Analysis methods. All participating studies used the following model to test for
interaction:

E Y½ � ¼ β0 þ βE � PAþ βG � Gþ βINT � G � PAþ βc � C;

where Y is the HDL-C, LDL-C, or TG value, PA is the PA variable with 0 or 1

coding for active or inactive group, and G is the dosage of the imputed genetic
variant coded additively from 0 to 2. The C is the vector of covariates which
included age, sex, study center (for multi-center studies), and genome-wide prin-
cipal components. From this model, the studies provided the estimated genetic
main effect (βG), estimated interaction effect (βGE), and a robust estimate of the
covariance between βG and βGE. Using these estimates, we performed inverse
variance-weighted meta-analyses for the SNP × PA interaction term alone, and 2df
joint meta-analyses of the SNP effect and SNP × PA interaction combined by the
method of Manning et al.14, using the METAL meta-analysis software. We applied
genomic control correction twice in Stage 1, first for study-specific GWAS results
and again for meta-analysis results, whereas genomic control correction was not
applied to the Stage 2 results as interaction testing was only performed at select
variants. We considered a variant that reached two-sided P < 5 × 10−8 in the meta-
analysis for the interaction term alone or in the joint test of SNP main effect and
SNP × PA interaction, either in the ancestry-specific analyses or in all ancestries
combined, as genome-wide significant. The loci were defined as independent if the
distance between the lead variants was >1Mb.

Combined PA-interaction effect of all known lipid loci. To identify all published
SNPs associated with HDL-C, LDL-C, or TG, we extended the previous curated list
of lipid loci by Davis et al.4 by searching PubMed and Google Scholar databases
and screening the GWAS Catalog. After LD pruning by r2 < 0.1 in the 1000
Genomes European-ancestry reference panel, 260 independent loci remained
associated with HDL cholesterol, 202 with LDL cholesterol, and 185 with TG
(Supplementary Datas 7–9). To approximate the combined PA interaction of all
known European-ancestry loci associated with HDL-C, LDL-C, or TG, we calcu-
lated their combined interaction effect as the weighted sum of the individual SNP
coefficients in our genome-wide summary results for European-ancestry. This
approach has been described previously in detail by Dastani et al.31 and incor-
porated in the package “gtx” in R. We did not weigh the loci by their main effect
estimates from the discovery GWAS data.

Examining the functional roles of loci interacting with PA. We examined
published associations of the identified lipid loci with other complex traits in
genome-wide association studies by using the GWAS Catalog of the European
Bioinformatics Institute and the National Human Genome Research Institute. We
extracted all published genetic associations with r2 > 0.5 and distance < 500 kb from
the identified lipid-associated lead SNPs32. We also studied the cis-associations of
the lead SNPs with all genes within ±1Mb distance using the GTEx portal33. We
excluded findings where our lead SNP was not in strong LD (r2 > 0.5) with the peak
SNP associated with the same gene transcript.

Data availability
The meta-analysis summary results are available for download on the CHARGE
dbGaP website under accession phs000930.
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