123 research outputs found

    Thermal convection experiments in liquid metal flows with and without magnetic field

    Get PDF
    The interaction of electrically conducting fluid flows with magnetic fields appears in numerous natural phenomena and technical applications. Since the relevant fluids – such as liquid metals and plasmas – are generally very hot, the flows are often accompanied or even driven by thermal convection. The study of this so-called magnetoconvection is thus of interest for a number of physical systems. Two aspects are investigated in this thesis. The first concerns the case when an imposed magnetic field does not alter the fluid flow. The second case explores the changes of the flow structure and global transport properties in the presence of strong magnetic fields. The first point is relevant for inductive measurement techniques, which are required to probe the flow without disturbing it. Here, the size of the fluid volume affected by a localised magnetic field is of major importance. This topic is investigated theoretically by deriving an algorithm to calculate the penetration depth of the magnetic field into the medium. This allows the prediction of a magnetic field strength, above which a flow is significantly disturbed. The theoretical results are verified for the measurement method of local Lorentz force velocimetry which is applied to a vertical convection flow. The second point is investigated experimentally for a Rayleigh-BĂ©nard convection system that is subject to a homogeneous vertical magnetic field. The set-up consists of a cylindrical cell of aspect ratio one. The large-scale flow structure is monitored using temperature measurements and ultrasound Doppler velocimetry. The evolution of the flow with increasing magnetic field strength is classified into different regimes and compared with theoretical predictions, and numerical simulations. Global transport properties of the flow concerning its momentum, and the heat passing through the fluid are analysed and their behaviour is interpreted in light of the aforementioned flow regimes. Additionally, a new theoretical model is developed to predict the turbulent heat and momentum transfer in the fluid by extending the Grossmann-Lohse theory for the classical Rayleigh-BĂ©nard convection setting by the effects of a vertical magnetic field. Experimental data of the present study and from literature are used to verify and enhance the model, and to identify relevant physical mechanisms responsible for the observed results.Die Wechselwirkung zwischen elektrisch leitfĂ€higen Fluiden und Magnetfeldern tritt in zahlreichen natĂŒrlichen PhĂ€nomenen und technischen Anwendungen auf. Weil die dabei relevanten Medien - meist FlĂŒssigmetalle oder Plasmen - im Allgemeinen sehr heiß sind, werden die Strömungen meist von thermischer Konvektion begleitet oder werden sogar von dieser getrieben. Das PhĂ€nomen der sogenannten Magnetokonvektion ist damit von Interesse fĂŒr eine große Anzahl physikalischer Systeme. Die vorliegende Arbeit untersucht hierbei zwei Aspekte. Zum einen wird der Fall betrachtet, wenn ein aufgeprĂ€gtes Magnetfeld das Strömungsfeld nicht verĂ€ndert. Zum anderen werden die Modifizierungen von Strömungsstruktur und globalen Transporteigenschaften durch starke Magnetfelder untersucht. Der erste Fall ist wichtig fĂŒr induktive Messtechniken, welche die Bewegung eines Mediums untersuchen mĂŒssen, ohne dieses dabei zu stören. Die GrĂ¶ĂŸe des Fluidvolumens, welches von einem örtlich begrenzten Magnetfeld beeinflusst wird, ist hier ein Ă€ußerst wichtiger Faktor. Dieses Thema wird untersucht, indem die Eindringtiefe des Magnetfeldes in das Medium theoretisch hergeleitet wird. Das erlaubt die Vorhersage einer MagnetfeldstĂ€rke, oberhalb derer eine Strömung maßgeblich gestört wird. Die theoretischen Ergebnisse werden mittels experimenteller Messungen ĂŒberprĂŒft. Dazu wird die Messmethode der lokalen Lorentzkraft-Anemometrie auf eine vertikale Konvektionsströmung angewandt. FĂŒr den zweiten Fall wird das System der Rayleigh-BĂ©nard Konvektion unter einem homogenen, vertikalen Magnetfeld experimentell untersucht. Der Aufbau besteht aus einer zylindrischen Zelle mit einem AspektverhĂ€ltnis von eins. Die großskalige Struktur der Strömung wird mittels Temperaturmessungen und Ultraschall Doppler Anemometrie ĂŒberwacht. Die Entwicklung der Strömung mit ansteigender MagnetfeldstĂ€rke kann in verschiedene Regime kategorisiert und mit theoretischen Vorhersagen sowie numerischen Simulationen verglichen werden. Globale Transporteigenschaften des Systems bezĂŒglich Impuls und ĂŒbertragener WĂ€rme werden analysiert und ihr Verhalten anhand der zuvor gefundenen Strömungsregime interpretiert. ZusĂ€tzlich wird ein theoretisches Modell entwickelt um den turbulenten WĂ€rme- und Impulstransport vorherzusagen. Dazu wird die Großmann-Lohse Theorie fĂŒr klassische Rayleigh-BĂ©nard Konvektion durch den Effekt eines vertikalen Magnetfeldes erweitert. Die experimentellen Daten aus der vorliegenden Arbeit und aus der Literatur werden genutzt, um dieses Modell zu verifizieren und zu optimieren. Dabei werden physikalische Prozesse identifiziert, welche maßgeblich zu den beobachteten Ergebnissen beitragen

    New Methods Visualizing Mesostructured Materials

    Get PDF
    On the one hand this work intends to present new possibilities on how the combination of characterization methods can be used to gain information not available from the individual techniques. On the other hand discrete tomography - a relatively new method in materials science - is used to image real three-dimensional nano structures with a resolution of only a few nanometers. Visualization not only facilitates the interpretation of scientific results, but also aims at contributing to a better general understanding of nano technology

    Entwicklung einer Methode zur gaschromatographischmassenspektrometrischen Bestimmung von 3-HydroxyfettsÀuren aus bakteriellem Endotoxin

    Full text link
    Als Standardmethode zur Bestimmung von Endotoxin gilt derzeit der LAL-Test. Ziel dieser Arbeit war es, eine alternative gaschromatographisch/massenspektrometrische Methode zu entwickeln, die die sensitive Quantifizierung von Endotoxin in Staubproben erlaubt.Die 3-OH FettsĂ€uren werden in einer zweistufigen Reaktion derivatisiert, wobei die SĂ€urefunktion mit 2,3,4,5,6-Pentafluorobenzylbromid verestert und in die Hydroxyfunktion mit Bis(trimethylsilyl)trifluoracetamid eine Trimethylsilylgruppe eingefĂŒhrt wird. Diese Derivate werden mit Hilfe der GC/MS-Kopplung im Single Ion Modus mit Electron Ionization getrennt und quantifiziert. Ein Vorteil der neuen Methode ist, dass eine weitere Steigerung der Empfindlichkeit durch Einsatz eines anderen, insbesondere fĂŒr halogenierte Substanzen geeigneten Ionisierungsverfahrens (Negative Ion Chemical Ionization) erreichbar ist. In einer nachfolgenden Arbeit konnte dies mittlerweile mit einer Empfindlichkeitssteigerung um den Faktor 100 belegt werden

    Collapse of Coherent Large Scale Flow in Strongly Turbulent Liquid Metal Convection

    Full text link
    The large-scale flow structure and the turbulent transfer of heat and momentum are directly measured in highly turbulent liquid metal convection experiments for Rayleigh numbers varied between 4×1054 \times 10^5 and ≀5×109\leq 5 \times 10^9 and Prandtl numbers of 0.025 ≀ Pr ≀ 0.0330.025~\leq~Pr~\leq ~0.033. Our measurements are performed in two cylindrical samples of aspect ratios Γ=\Gamma = diameter/height =0.5= 0.5 and 1 filled with the eutectic alloy GaInSn. The reconstruction of the three-dimensional flow pattern by 17 ultrasound Doppler velocimetry sensors detecting the velocity profiles along their beamlines in different planes reveals a clear breakdown of coherence of the large-scale circulation for Γ=0.5\Gamma = 0.5. As a consequence, the scaling laws for heat and momentum transfer inherit a dependence on the aspect ratio. We show that this breakdown of coherence is accompanied with a reduction of the Reynolds number ReRe. The scaling exponent ÎČ\beta of the power law Nu∝RaÎČNu\propto Ra^{\beta} crosses \FIN{eventually} over from ÎČ=0.221\beta=0.221 to 0.124 when the liquid metal flow at Γ=0.5\Gamma=0.5 reaches Ra≳2×108Ra\gtrsim 2\times 10^8 and the coherent large-scale flow is completely collapsed.Comment: 4 pages, 5 figures, 1 supplementary with 1 figure and 4 tables, 1 movi

    Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field

    Get PDF
    Numerical simulations of quasi-static magnetoconvection with a vertical magnetic field are carried out up to a Chandrasekhar number of Q = 108 over a broad range of Rayleigh numbers Ra. Three magnetoconvection regimes are identified: two of the regimes are magnetically constrained in the sense that a leading-order balance exists between the Lorentz and buoyancy forces, whereas the third regime is characterized by unbalanced dynamics that is similar to non-magnetic convection. Each regime is distinguished by flow morphology, momentum and heat equation balances, and heat transport behaviour. One of the magnetically constrained regimes appears to represent an ‘ultimate’ magnetoconvection regime in the dual limit of asymptotically large buoyancy forcing and magnetic field strength; this regime is characterized by an interconnected network of anisotropic, spatially localized fluid columns aligned with the direction of the imposed magnetic field that remain quasi-laminar despite having large flow speeds. As for non-magnetic convection, heat transport is controlled primarily by the thermal boundary layer. Empirically, the scaling of the heat transport and flow speeds with Ra appear to be independent of the thermal Prandtl number within the magnetically constrained, high-Q regimes

    The complexity of mesoporous silica nanomaterials unravelled by single molecule microscopy

    Get PDF
    Mesoporous silica nanomaterials are a novel class of materials that offer a highly complex porous network with nanometre-sized channels into which a wide amount of differently sized guests can be incorporated. This makes them an ideal host for various applications for example in catalysis, chromatography and nanomedicine. For these applications, analyzing the host properties and understanding the complicated host–guest interactions is of pivotal importance. In this perspective we review some of our recent work that demonstrates that single molecule microscopy techniques can be utilized to characterize the porous silica host with unprecedented detail. Furthermore, the single molecule studies reveal sample heterogeneities and are a highly efficient tool to gain direct mechanistic insights into the host–guest interactions. Single molecule microscopy thus contributes to a thorough understanding of these nanomaterials enabling the development of novel tailor-made materials and hence optimizing their applicability significantly

    Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation

    Get PDF
    Long-term potentiation (LTP) in the rat hippocampus is the most extensively studied cellular model for learning and memory. Induction of classical LTP involves an NMDA receptor- and calcium-dependent increase in functional synaptic AMPA receptors mediated by enhanced recycling of internalized AMPA receptors back to the postsynaptic membrane. Here we report a novel, physiologically relevant NMDA receptor-independent mechanism that drives increased AMPA receptor recycling and LTP. This pathway requires the metabotropic action of kainate receptors and activation of G-protein, protein kinase C and phospholipase C. Like classical LTP, kainate receptor-dependent LTP recruits recycling endosomes to spines, enhances synaptic recycling of AMPA receptors to increase their surface expression and elicits structural changes in spines, including increased growth and maturation. These data reveal a new and previously unsuspected role for postsynaptic kainate receptors in the induction of functional and structural plasticity in the hippocampus
    • 

    corecore