3,257 research outputs found

    Multi-objective optimization of semi-submersible platforms using particle swam optimization algorithm based on surrogate model

    Get PDF
    An Innovative Semi-submersible platform Optimization Program (ISOP) has been developed to solve the multi-objective optimization problem for semi-submersible platforms (SEMI). Three types of SEMIs, including semi-submersible floating production unit (SEMI FPU), heave and vortex induced motion (VIM) suppressed semi-submersible (HVS) and semi-submersible floating drilling unit (SEMI FDU) are selected for case studies. The hydrodynamic performances of three types of semi-submersible platforms are analyzed by using panel method and Morison's equation. In order to improve the computing efficiency, the hydrodynamic performances for different hull forms during optimization process are estimated by the surrogate models, which are built by artificial neural network prediction method and Inverse Multi-Quadric (IMQ) radial basis function (RBF). The accuracy of surrogate models is ensured by performing leave-one-out cross validation (LOOCV). The most probable maximum (MPM) heave motion and total weight, representing the safety and economy, respectively, are chosen as the two objectives for optimization. The transverse metacentric height, the MPM surge motion, and the most probable minimum (MPMin) airgap are selected as constraints. Based on surrogate models, multi-objective particle swarm optimization (MOPSO) is employed to search for the Pareto-optimal solutions. A Computational Fluid Dynamics (CFD) tool is adopted to validate the proposed model for the prediction of the motion responses. By comparing the obtained Pareto-optimal solutions with the initial design using simple panel method plus Morison's equation, it is confirmed that the MPM heave motions for SEMI FPU, HVS and SEMI FDU can be suppressed by up to 12.68%, 11.92%, and 14.96%, respectively, and the total weights can be reduced by up to 12.16%, 13.00%, and 24.91%, respectively. Through the detailed analyses of optimization results, the most efficient design strategies for semi-submersible platforms are discussed and proposed

    Multi-objective optimization of Tension Leg Platform using evolutionary algorithm based on surrogate model

    Get PDF
    An Innovative Tension Leg Platform (TLP) Optimization Program, called ITOP, has been developed to solve the multi-objective optimization problem for TLP. We first examine the hydrodynamic behavior of a base TLP for wave headings between 0∘ and 45∘. The numerical results show that the maximum heave and surge motion responses occur in 0∘ wave heading in long-crest waves. It is found that the dynamic tension of No. 8 tendon is larger than the other tendons and reaches its maximum in 45∘ wave heading. It can be attributed to the fact that heave and pitch motions are almost out of phase for wave periods between 10 and 15 s. Because the maximum wave elevation occurs near the northeast column and the vertical motion is very small, the minimum airgap occurs there. Moreover, a surrogate model based on radial basis function (RBF) has been built and adopted to estimate the hydrodynamic performance of TLP. A multi-objective evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGAII), is employed to find the Pareto-optimal solutions. By comprehensive and systematic computations and analyses, it is revealed that the maximum dynamic tension shows positive correlation with pontoon height and width, but negative correlation with hull draft, column spacing, and column diameter. The most efficient modification strategy for design is proposed to reduce the maximum dynamic tendon tension. According to the strategy, the column spacing, draft, and column diameter should be increased in sequence. By applying this strategy, the maximum dynamic tendon tensions can be reduced while the total weight of the platform is minimized as much as possible

    The association between serum phosphorus and common carotid artery intima–media thickness in ischemic stroke patients

    Get PDF
    PurposeAn elevated concentration of phosphorus is associated with an increased risk of atherosclerosis and cardiovascular diseases. Common carotid artery intima–media thickness (cIMT) is an imaging marker of atherosclerosis. However, data on the relationship between phosphorus and cIMT in ischemic stroke are scarce. We aimed to evaluate the association between serum phosphorus levels and cIMT in patients who had experienced ischemic stroke.Patients and methodsA total of 1,450 ischemic stroke patients were enrolled. Participants were divided into four groups (quartiles) according to baseline serum phosphorus level. Carotid atherosclerosis was identified by measurement of cIMT; abnormal cIMT was defined as a maximum cIMT or mean cIMT ≥ 1 mm. Multivariable logistic regression models were used to assess the association between serum phosphorus level and the presence of abnormal cIMT.ResultsIn the multivariable adjusted analysis, falling into the highest quartile for serum phosphorus (Q4) was associated with a 2.00-fold increased risk of having abnormal maximum cIMT [adjusted odds ratio (OR) 2.00; 95% confidence interval (CI) 1.44–2.79] and a 1.76-fold increased risk of having abnormal mean cIMT (adjusted OR 1.76; 95% CI 1.22–2.53) in comparison to Q1. Furthermore, the association between serum phosphorus and abnormal cIMT was confirmed in analyses treating serum phosphorus as a continuous variable and in subgroup analyses.ConclusionIn acute ischemic stroke patients, baseline elevated serum phosphorus level was found to be independently associated with carotid atherosclerosis, as measured by cIMT

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    Computing Optical Properties of Ultra-thin Crystals

    Get PDF
    An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2, MoSe2 , WS2 , WSe2 , h-AlN, h-BN, fluorographene, graphane). Ultra-thin crystals are atomically-thick layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory (DFT)

    Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys

    Get PDF
    Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment
    corecore