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Abstract

An Innovative Tension Leg Platform (TLP) Optimization Program, called ITOP, has been developed to solve

the multi-objective optimization problem for TLP. We first examine the hydrodynamic behavior of a base

TLP for wave headings between 0◦ and 45◦. The numerical results show that the maximum heave and surge

motion responses occur in 0◦ wave heading in long-crest waves. It is found that the dynamic tension of No.8

tendon is larger than the other tendons and reaches its maximum in 45◦ wave heading. It can be attributed

to the fact that heave and pitch motions are almost out of phase for wave periods between 10 and 15 sec.

Because the maximum wave elevation occurs near the northeast column and the vertical motion is very small,

the minimum airgap occurs there. Moreover, a surrogate model based on radial basis function (RBF) has been

built and adopted to estimate the hydrodynamic performance of TLP. A multi-objective evolutionary algorithm,

Non-dominated Sorting Genetic Algorithm II (NSGAII), is employed to find the Pareto-optimal solutions. By

comprehensive and systematic computations and analyses, it is revealed that the maximum dynamic tension

shows positive correlation with pontoon height and width, but negative correlation with hull draft, column

spacing, and column diameter. The most efficient modification strategy for design is proposed to reduce the

maximum dynamic tendon tension. According to the strategy, the column spacing, draft, and column diameter

should be increased in sequence. By applying this strategy, the maximum dynamic tendon tensions can be

reduced while the total weight of the platform is minimized as much as possible.

1. Introduction

As the offshore oil/gas exploration moves toward deep water, floating production platforms, such as Floating

Production Storage and Offloading (FPSO), Semi-submersible (SEMI), Tension Leg Platform (TLP), and Spar,

have been widely adopted in recent years (API RP 2SK, 2005). Different from the other three floater concepts

either using taut or semi-taut mooring systems, TLP is a compliant floating platform moored to seabed by

several tendons which are pretensioned by excess buoyancy over total structural weight. The stability and

vertical motion performance (heave, roll, and pitch) of TLP are much better than FPSO and traditional SEMI.
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Because of TLP’s excellent motion performance, production wellheads and dry tree can be placed on the deck

so that the cost for fabrication, production, and maintenance can be reduced accordingly. In conceptual or

preliminary design phases, hull sizing is one of the most important task which can have significant effects on

global motion performance and total cost for a project. In practice, hull sizing is an iterative process, which

can be called as ‘design spiral’ (API RP 2T, 1997). It usually relies on designers’ engineering experience

acquired from the previous projects. Therefore, through conventional design approach, it’s very difficult and

time-consuming to achieve an optimal design for better global motion performance and lower cost.

A few researchers have put forward the optimization methods in order to achieve the optimal hydrodynamic

performance for various offshore floating structures. For example, Akagi et al. (1984) applied generalized

reduced gradient algorithm (GRGA) on hull-form optimization for a SEMI, in which the displacement, variable

load, and heave motion were analytically formulated as objectives. Clauss and Birk (1996) used a commercial

code, WAMIT, to evaluate the hydrodynamic performance of an arbitrary hull form, instead of using simplified

formulae. In the study, nonlinear programming approach (NLP) was introduced to seek the minimum downtime

of three different types of offshore structures, including gravity base structure (GBS), TLP, and SEMI. In order

to reduce the design variables, Vannucci (1996) simplified the configuration of a TLP by a cylinder with two

additional square plates. Based on this simplified model, the minimum weight was obtained by taking stability

and hydrodynamic performance as constraints. Birk et al. (2004) compared the differences on improving the

seakeeping performance between the deterministic method, such as Sequential Quadratic Programming (SQP),

and the global methods, such as Genetic Algorithm (GA) and Adaptive Simulated Annealing (ASA). In their

study, the hydrodynamic behavior of each design was estimated using WAMIT. Lee et al. (2007) utilized SQP

and GA for the optimization of TLP by considering tendon fatigue life as an objective. Different from this

previous hydrodynamic computations, where tendon tensions were simplified by equivalent linear spring, fully

coupled analyses, comprised of frequency-domain and time-domain coupled analyses, were conducted by Lee

and Lim (2008). More efficient hull shape optimization was obtained based on more accurate prediction of

TLP’s dynamic behaviors. Birk (2009) adopted a variant of multi-objective evolutionary algorithm (ε-MOEA)

for minimizing heave motion while maximizing deck load of a SEMI-type floater. They integrated parametric

design tools, hydrodynamic analyses code, and multi-objective optimization algorithms to find Pareto-optimal

solutions. To optimize the hull and mooring configuration for a SEMI, Williams (2012) took various conditions,

such as quayside hull-topsides integration, wet tow, and in-place operating conditions, into consideration in

stability and global performance analyses. Park et al. (2015) selected heave motion response and total steel

weight as objectives to optimize a SEMI floating production unit (FPU). Simulated Annealing (SA) algorithm

was employed with WADAM (DNV, 2013) for the hull form optimization. It was found that the column height

was proportional to the total steel weight and inversely proportional to heave motion response. Kim and

Jang (2016) extended the technique to optimize a TLP with tendon system. The results indicated that the

pontoon volume and the sectional area of tendons are the dominant factors affecting motion performance and

construction cost. Sugita and Suzuki (2016) developed a code for the optimization of a TLP for better global

hydrodynamic performance, stability, and structural strength, based on Genetic Algorithm (GA) and Simulated

Annealing (SA) algorithm, which proved to be efficient in seeking the optimal hull shape without using any
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empirical parameters. More recently, Zhang et al. (2017) performed extensive parametric study for a SEMI

FPU, providing a benchmark for the future automated hull form optimization. They found that increasing

draft could reduce the heave motion effectively, but increasing column width, pontoon width, or pontoon height

would increase the heave motion.

Two essential problems should be considered properly in the optimization process for offshore floating

structures. The first is on the selection of optimization algorithms. Based on previous studies, the global opti-

mization algorithms, such as GA and SA, have shown their superiorities over the local optimization algorithms

(i.e., GRG, NLP, and SQP). Meanwhile, the multi-objective optimization methods are required because there

are always several objectives needed to be optimized simultaneously. Although the multi-objective global op-

timization algorithms require more computing time than the local methods, they attract more attention and

have been widely applied in various fields in recent years. The second one is on the method to evaluate the

hydrodynamic performance. When the computing technology is limited, the performance of floater is estimated

by simplified models. With the rapid development in marine hydrodynamics, a few softwares, such as WAMIT

and CHARM3D (Kim, 1997), prove to be efficient in computing the hydrodynamic coefficients and motion

responses.

The present study is focused on applying a multi-objective evolutionary algorithm to optimize a TLP for

better hydrodynamic performance and economy. A code called Innovative TLP Optimization Program (ITOP)

has been developed. The multi-objective optimization scheme is implemented to find Pareto-optimal solutions

instead of converting to a single-objective optimization problem. To raise the global optimization efficiency, a

surrogate model based on radial basis function (RBF) has been built in order to compute the performance of

each different hull configuration. A typical conventional TLP is selected for the present study. The base TLP

is comprised of four circular columns, connected to a ring pontoon with a rectangular cross-section. Hull draft,

column spacing, column diameter, pontoon height, and pontoon width are the selected five design variables to

be optimized. The sample points used for constructing surrogate model are selected based on the initial design.

DNV software WADAM (DNV, 2013; Payne et al., 2008; Matos et al., 2011), which has been extensively

validated for the prediction of the wave-induced motion responses, is employed for hydrodynamic computations

and analyses. As hull form is varied, the panel model and Morison’s model are rebuilt and the motion responses

are recomputed by WADAM and POSTRESP (DNV, 2007). The RBF-based surrogate model is employed to

evaluate the hydrodynamic performance of the varied hull form during optimization. To minimize the most

probable maximum (MPM) dynamic tendon tension and total structural weight, a multi-objective evolutionary

algorithm, Non-dominated Sorting Genetic Algorithm II (NSGAII), is applied. Finally, Pareto-optimal solutions

have been obtained and validated by direct numerical simulations.

2. Mathematical Formulation

In the phase of conceptual design, principal dimension of the hull and mooring and riser systems are

preliminarily determined considering the environmental conditions and functional requirements. The conceptual

selection results are taken as an initial design for further optimization in the present study. The key parameters

of the selected initial design include design variables, which are varied frequently in order to achieve optimal
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values, and control variables, which are kept constant during optimization process. Five design variables include

hull draft, column spacing, column diameter, pontoon height, and pontoon width. The other parameters such

as topside weight, freeboard, and sectional area of tendons are fixed. The upper and lower bounds of each

design variable are determined considering geometric and practical engineering feasibility. Based on design of

experiment (DOE) theories (Anderson and Whitcomb, 1970), a set of sample points can be selected in the

searching field. Every sample point represents a feasible design with corresponding hydrodynamic performance

and weight. After computing hydrodynamic performance for every sample point, a surrogate model can be

built based on the obtained numerical solutions. Therefore, the computing time for evaluating hydrodynamic

performance of an arbitrary hull configuration decreases rapidly compared with direct numerical simulations.

Multi-objective optimization algorithm is employed using the obtained surrogate model. The total structural

weight and dynamic tendon tension are selected as objective functions with a number of constraints. Through

a number of iterations, the optimal designs, called Pareto-optimal solutions, are obtained. The flowchart of the

overall optimization process is illustrated in Figure 1.

Initial design

· Design variables

· Control variables

Design of experiments

Generate the sample points

Model generation

· Panel model

· Morison model

· Tendon system model

Mass estimation

· Total structure weight

· Center of gravity

· Radius of gyration

Metocean condition

· Water depth

· Wave direction

· Wave spectrum

Hydrodynamic analysis

· 6 degrees of freedom

· Dynamic tension of tendon

· Airgap

Evaluate prediction accuracy 

of surrogate model 

Optimize formal parameter 

Verify optimal results

Objectives

Constraints

Design variables

Multi-objective optimization

Obtain Pareto-optimal solutions

Radial basis function

Build surrogate model

Figure 1: Flowchart of overall optimization process. Gray modules: numerical simulations for hydrodynamic estimation; Yellow

modules: construction of surrogate models; Blue modules: iterative optimization process; Green module: an initial design obtained

from conceptual design stage.

2.1. Hydrodynamic analysis method

The main dimensions of a base TLP are illustrated in Figure 2. Two coordinate systems are employed: the
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Figure 2: Definition of the main particulars of the base TLP. CD: column diameter; CS: column spacing; PW: pontoon width; PH:

pontoon height.

x0 system is fixed to the mean position of the floating body, and the x system is fixed to the moving hull. The

boundary value problem is solved in the right-hand fixed coordinate system, as shown in Figure 2. The x-axis

points to the direction of platform east (PE) and the z-axis points upward. The origin is on the calm water

plane at mid-section of the hull.

The definition of the incident wave heading is illustrated in Figure 3, where a plan view of the TLP is

presented.

Figure 3: Definition of incident wave heading β (Plan View) and index of four columns. NW Col: northwest column; NE Col:

northeast column; SW Col: southwest column; SE Col: southeast column.

In the present study, hydrodynamic loads are computed based on potential flow theory. The loads induced

by wind, current, and higher-order harmonic wave forces are neglected in the present optimization model. In
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order to compute the wave exciting force and drag force acting on wetted surface, panel method and Morison’s

equation are both adopted. After evaluating the wave-induced loads, the 6 degrees of freedom (DoF) equations

of motion can be solved in frequency domain. The motion responses of the TLP in irregular waves are evaluated

as the linear superposition of the responses in regular waves.

2.1.1. Panel method

In frame of potential flow theory, the fluid is assumed incompressible and the flow irrotational. Velocity

potential function Φ(x, y, z, t) is introduced to describe the fluid motion. When the amplitude of incident wave

is small and the body motion is stable, the component of time-dependent term is separated out as follow

Φ(x, y, z, t) = Re
[

ϕ(x, y, z)e−iωt
]

(1)

where ϕ(x, y, z) denotes the spatial velocity potential function and ω represents the wave angular frequency.

For computations of the first-order wave forces, the total velocity potential can be decomposed into different

components as follow

Φ(x, y, z, t) = ΦI(x, y, z, t) + ΦD(x, y, z, t) + ΦR(x, y, z, t) (2)

where ΦI , ΦD, and ΦR denote the velocity potentials induced by incident waves, diffracted waves, and radiated

waves, respectively.

The wetted surface is discretized into a number of flat panels. The source strengths are assumed to

be constant over each panel. The velocity potential in the fluid can be expressed as the superposition of the

potentials induced by source points distributed on hull. Through solving discretized boundary integral equations,

the source strengths and the velocity potential are obtained. Furthermore, the hydrodynamic pressures on the

wetted surface are computed. The panel model for the base TLP is illustrated in Figure 4.

Figure 4: Panel model for the initial design. The hull of the TLP includes four columns (draft = 31 m, column spacing = 60 m,

column diameter = 20 m) and four pontoons (pontoon height = 8 m, pontoon width = 10 m). Mesh density = 2.5 m; number of

panels N = 2864.

2.1.2. Morison’s model

Morison’s equation is an empirical formula for evaluating the force acting on the element based on the

assumption that the wave system does not have diffraction and radiation due to the presence of Morison
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element. Morison’s equation is written as

F = ρVM (1 + Ca)v̇ +
1

2
ρσCDv|v| (3)

where the first term and second term on the right side are the inertia force and drag force, respectively; ρ is

density of the fluid; VM is displaced volume of an element; v and v̇ are the horizontal undisturbed fluid velocity

and acceleration, respectively; σ is the projected area of the element; The added mass Ca and drag coefficients

CD are determined based on the shape of the element. In the present study, inertia force is computed using

panel method, and the drag force is evaluated by Morison’s equation. The Morison’s model for the base TLP

is illustrated in Figure 5.

Figure 5: Morison model for the initial design. Number of Morison elements is N = 200.

2.1.3. Equations of motion

By adopting panel method and Morison’s equation, the hydrodynamic loads acting on the floater are

computed. The equations of motion are solved in frequency domain to predict the motion responses in regular

waves. The equations of motion are written as

[−ω2(M+A(ω)) + iω(Bp(ω) +Bv) +C+Ce]ξ(ω, β) = F(ω, β) (4)

where ξ(ω, β) = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) denotes the displacement vector of rigid body for wave frequency ω and

incident wave heading β; A(ω) and Bp(ω) are the added mass and radiation damping matrix, respectively;

M represents the mass/inertia matrix; Bv denotes the linearized viscous damping matrix; C is the hydrostatic

restoring matrix; Ce is the external restoring matrix induced by the tendons or mooring system; F(ω, β) denotes

the first-order wave exciting force.

In the equations of motion, the frequency-dependent A, Bp, Bv, and F are obtained by panel method and

Morison’s equation. The accurate estimation of mass is a very complicated task because the steel weight of

the platform, equipment, and variable loads are difficult to estimate at early design stage. It is assumed that

the steel weight is proportional to the volume of the platform. The proportionality coefficients for different

components of the floater are listed in Table 1. In addition, a 15% margin is added to account for the outfitting

weight. The topside weight is fixed as a constant based on functional requirements.
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Table 1: Proportionality coefficients for mass estimation.

Component Unit Coefficient

Column ton/m3 0.16

Node ton/m3 0.19

Pontoon ton/m3 0.24

The hydrostatics restoring matrix is computed by

C =





























0 0 0 0 0 0

0 0 0 0 0 0

0 0 ρgS ρgSy −ρgSx 0

0 0 ρgSy ρg(Syy + VwzB)−mgzG −ρgSxy −ρgVwxB +mgxG

0 0 −ρgSx −ρgSxy ρg(Sxx + VwzB)−mgzG −ρgVwyB +mgyG

0 0 0 −ρgVwxB +mgxG −ρgVwyB +mgyG 0





























(5)

where (xG, yG, zG) is the center of gravity, (xB , yB , zB) the center of buoyancy, ρ the density of the fluid, g the

acceleration of gravity, Vw the displacement, S the waterplane area; Sx and Sy are the first-order moments of

waterplane area to x and y axes, respectively; Sxx and Syy are the second-order moments of waterplane area

to x and y axes, respectively.

The mooring elements of TLP are tendons connecting the platform to the seabed. In the present study,

the tendons are simplified by linear springs, because the motion of platform is small comparing to the length

of tendons. The external restoring matrix due to the stiffness of the tendons varies as the platform moves in

horizontal direction. The external restoring matrix induced by tendons is formulated as

Ce =

N
∑

m=1

Km =

N
∑

m=1





























Tpre

Lt
0 0 0 −zm

Tpre

Lt
0

0
Tpre

Lt
0 zm

Tpre

Lt
0 0

0 0 EA
Lt

0 0 0

0 zm
Tpre

Lt
0 −z2m

Tpre

Lt
+ y2m

EA
Lt

0 0

−zm
Tpre

Lt
0 0 0 −z2m

Tpre

Lt
+ x2

m
EA
lLt

0

0 0 0 0 0 (x2
m + y2m)

Tpre

Lt





























(6)

where N is the number of tendons, E the elasticity modulus of the material of tendon, A the cross-section area

of each tendon, Lt the length of the tendon measured from seabed to porch, (xm, ym, zm) the coordinate of the

TLP tendon tip, Tpre the pretension of each tendon induced by the exceeding buoyancy over the weight, which

can be computed by

Tpre =
△−W

N
(7)

where △ denotes the displacement of the platform; W is the total weight of the platform.

Upon solving the equations of motion, the dynamic tendon tension can be evaluated based on the assump-

tion that the mooring is equivalent to a linear spring. By solving the equations of motion in frequency domain,

the motion responses in regular waves can be obtained. In order to compute the motion responses in irregular
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waves, a wave spectrum denoted by Sw should be used. In the present study, JONSWAP wave spectrum is

employed. The response spectrum Sr can be computed by

Sr(ω, β) =

∫ π/2

−π/2

|H(ω, ϵ)|2Sw(ω)f(α)dα (8)

where β is the wave heading (main direction of the irregular wave system); H denotes the response amplitude

operator (RAO) in 6 DoF; ϵ = β + α represents the heading angle between the elementary sinusoidal waves

and the x-axis; α is the angle of the elementary waves relative to the main direction of the irregular wave

system; f(α) is a wave spreading function only for short-crested waves, representing the directional distribution

of energy in the waves. According to Rayleigh distribution, the most probable maximum (MPM) response in

short-term sea state, such as 3-hour storm, can be computed by

Amax =

√

(

2m0log
t

T2

)

(9)

where Amax represents the MPM response in t; m0 denotes the zero moment of the response spectrum; t is

the time duration (3 hours adopted in the present paper) and T2 is the zero-upcrossing period of the response

spectrum.

2.1.4. Airgap computations

The airgap is defined as the minimum distance measured from wave crest to the bottom of deck. It is one

of the most important design criteria for evaluating the wave slamming events. For airgap, the setdown of the

platform due to the offset should be taken into account. The airgap can be formulated as

AG = AGstatic − Zelevation − Zsetdown + (ξ3 − ξ5x+ ξ4y) (10)

where AG represents the airgap at a specified location; AGstatic is the static airgap in calm water, which is

equivalent to the freeboard. In the present study, the freeboard is fixed to 25 m. Zsetdown denotes a steady

displacement in vertical direction. When the platform has an offset induced by wind, wave, and current loads,

the draft will increase because of the restraint of tendons. The increased draft is called ‘setdown’. Zelevation

represents the absolute wave elevation due to incident wave, diffracted wave, and radiated wave. (x, y) denotes

the horizontal coordinate of a specified point. The term (ξ3 − ξ5x + ξ4y) is the vertical combined motion of a

point on still water surface.

2.2. Surrogate model

Surrogate model is efficient for rapid optimization analyses (Audet et al., 2000). The application of sur-

rogate model can improve the computing efficiency significantly while achieving accurate prediction. Design of

experiments, related with the strategy of assigning sample points, is one of the important tasks which should

be considered during the construction process of surrogate model. At present, the developed design of exper-

iments mainly fall into two categories: space-boundary-based design and space-filling-based design (Forrester

and Keane, 2009). The design of experiments based on space filling, including full factorial design, orthogo-

nal design, uniform design, and latin hypercube design, becomes more feasible when the dimension of design

variables increases. In addition, the mathematical relationship between input and output is also important
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to achieve high efficiency and accuracy. The commonly used surrogate models include response surface (RS)

model, Kriging model, radial basis function (RBF), and support vector machine (SVM). In the present study,

the radial basis function (RBF) is adopted to construct the surrogate model since RBF model is very convenient

to find the optimal form parameter and good at function fitting.

2.2.1. Design of experiments

Full factorial design strategy is adopted to select sample points. In theory of DOE, design variables are

called ‘factors’, each with several different values, also called ‘levels’. The full factorial design is an experiment

consisting all possible combinations of these levels across all factors. The upper bound, lower bound, and level

step of all factors are listed in Table 2. The level step is computed as (Upper bound - Lower bound)/(level

number - 1).

Table 2: Full factorial design.

Factors Upper bound Lower bound Level number Level step

Draft 34.1 m 27.9 m 5 1.55 m

Column diameter 22.0 m 18.0 m 3 2.00 m

Column spacing 66.0 m 54.0 m 5 3.00 m

Pontoon width 11.0 m 9.0 m 3 1.00 m

Pontoon height 8.8 m 7.2 m 3 0.80 m

According to the permutation and combination theory, totally 52 × 33 = 675 sample points are selected

for training the surrogate model. Each sample point represents a specific hull configuration and the associated

tendon tension and structural weight are selected as objectives. The surrogate model is adopted to build the

correlation between input (platform dimension) and output (hydrodynamic performance).

2.2.2. Radial basis function model

The radial basis function (RBF) model is widely used in the field of data fitting. A general discussion of

RBF is presented by Buhmann (2009). The RBF is also applied on seakeeping problem by Zhang et al. (2010).

The sketch of radial basis function is illustrated in Figure 6.

The radial basis function is a one-dimensional nonlinear function of Euclidean distance between the inter-

polation point and the sample points.

gj(x) = g(∥x− xj∥), j = 1, ..., Q (11)

where x is the vector of interpolation point; xj is the vector of the jth sample point; Q denotes the number of

sample points. The approximating function yi is represented as a sum of Q radial basis functions gj(xi), each

associated with a different center xj , and weighted by an appropriate coefficient wj .

yi =

Q
∑

j=1

wjgj(xi) (12)

xi = [ x1i x2i · · · xMi ]T (13)
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Figure 6: Sketch of RBF model. Design variables: [x1, x2,...,xQ]; objective values: [y1,...,yQ]; radial basis functions: [g1,...,

gi,...,gQ]; weight: [w1,...,wi,...,wQ]. Square nodes: input layer; big circle nodes: hidden layer; small circle nodes: output layer.

yi = [ y1i y2i · · · yNi ]T (14)

where weights wj and approximating function yi share the same dimension. M denotes the dimension of design

variable. N represents the dimension of objective value. It is assumed that the input matrix is X and its

corresponding output matrix is Y . They can be written as

X = [ x1 x2 · · · xQ ] =

















x11 x12 · · · x1Q

x21 x22 · · · x2Q

...
...

. . .
...

xM1 xM2 · · · xMQ

















(15)

Y = [ y1 y2 · · · yQ ] =

















y11 y12 · · · y1Q

y21 y22 · · · y2Q
...

...
. . .

...

yN1 yN2 · · · yNQ

















(16)

where xij is the ith design variable of the jth sample point; yij represents the ith objective value of the jth

sample point.

As one of the commonly used radial basis function, Multi-Quadric function (MQ) is employed in the present

study and can be written as

gj(x) =

√

∥x− xj∥
2
+ b2 (17)

The value of formal parameter b has a significant impact on the accuracy of the surrogate model and should be

chosen properly. The accuracy of predicted outputs were tested by the leave-one-out cross validation (LOOCV)

to find the best formal parameters.
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The radial basis functions G can be obtained using the input matrix X and can be written as

G =

















g1(x1) g1(x2) · · · g1(xQ)

g2(x1) g2(x2) · · · g2(xQ)
...

...
. . .

...

gQ(x1) gq(x2) · · · gQ(xQ)

















∈ RQ×Q (18)

The system (12) can be written in matrix form

Y = WG (19)

The weights can be found after matrix inversion

W = Y G−1 (20)

with

W = [ w1 w2 · · · wQ ] =

















w11 w12 · · · w1Q

w21 w22 · · · w2Q

...
...

. . .
...

wN1 wN2 · · · wNQ

















∈ RN×Q (21)

2.3. Multi-objective genetic algorithm

Nowadays, most of the engineering problems involve a number of objectives to be optimized simultaneously.

The challenge of these problems is that the objectives can conflict with each other, so the results of multi-

objective optimization problems are a set of trade-off optimal solutions, also known as Pareto-optimal solutions.

The genetic algorithm is one of the intelligent evolutionary algorithms, which can search for the global optimal

points with random starting points. In the optimization process, the design variables are combined as an

array, called ’individual’. Many different individuals form a population, which will vary with the operations of

selection, crossover, and mutation in each generation. When the number of generation becomes large enough,

the individuals are nearly the optimal solutions because of the natural rules of ‘Natural selection and survival

of the fittest’ (Sivaraj and Ravichandran, 2011; Deb, 2001).

2.3.1. Non-dominated sorting genetic algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGAII) is one of the popularly used multi-optimization

algorithms (Deb, 2011). The flowchart of the algorithm is illustrated in Figure 7.

Different from the traditional genetic algorithms, NSGAII introduces the concepts of non-dominated sorting

and crowing distance in the genetic algorithm in order to realize the sequence of all individuals. If one individual p

is better than the other individual q in terms of all objectives, then p is defined as the domination of q. Otherwise,

p is non-dominated to q. In NSGAII algorithm, the non-dominated individuals share the same ranking value,

while the higher ranking individuals dominate the lower ranking individuals. When the optimization process

finishes, the highest ranking individuals are nearly the Pareto-optimal solutions. To obtain uniform distribution

optimal solutions, the individuals with the same ranking value should be further ranked by the crowing distance,

Euclidean distance between other individuals. Population trimming procedure can keep the population size as

a fixed number. Through a number of iterations, the optimization can yield Pareto-optimal solutions.

12
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Figure 7: The description of the principle for non-dominated sorting genetic algorithm II (NSGAII).

2.3.2. Penalty function

The problems solved by NSGAII are usually unconstrained or linear constrained, but the constraints of the

present study such as heave, surge, and airgap are nonlinear. A penalty function is introduced for the trans-

formation from nonlinear constrained problems to unconstrained problems. The multi-objective optimization

problem, in its general form, can be written as

min f(x) = [f1, f2, ..., fm] (22)

x = [x1, x2, ..., xn] (23)

s.t. gi(x) > 0, i = 1, ..., k (24)

hj(x) = 0, j = 1, ..., l (25)

In the above mentioned problem, there are m objective functions, n variables, k greater-than-equal-to type

inequality constraints, and l equality constraints. The function f is the m-dimensional multi-objective function.

The design variables x are combined as an n-dimensional array. gi represents the ith constraint which is a linear

or nonlinear function. hi represents the ith equation constraint. Penalty function can be written as

P (x) =
k

∑

i=1

max[0,−gi(x)]
2 +

l
∑

j=1

|hj(x)|
2 (26)

When x satisfies all of the constraints, the value of the penalty function is equal to zero, otherwise the penalty

function is a positive number. By means of penalty function, the constrained optimization problem transforms

the objectives as

min F (x, σ) = f(x) + σP (x) (27)

where σ is penalty factor, which is defined as a very large positive number. In the optimization procedure, the

second term on the right side of Eqn.(27) will approach to zero, which means all of the constraints have been

fulfilled.
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3. Hydrodynamic Performance Analysis

3.1. Convergence tests

To determine a proper mesh density for accuracy and efficiency consideration, the convergence tests are

carried out for an initial design in 0◦ wave heading. The main particulars and other parameters of the initial

design are listed in Table 3.

Table 3: Main particulars of the initial design.

Parameter Symbol Unit Value

Draft Draft m 31

Column diameter CD m 20

Column spacing CS m 60

Pontoon width PW m 10

Pontoon height PH m 8

Freeboard FB m 25

Deck height DH m 15

Deck steel weight Wdeck ton 8000

Equipment weight Wequip ton 12000

Hull steel weight Whull ton 17900

Vertical center of gravity V CG m 12.1

Radius of gyration (Rxx, Ryy, Rzz) m (31,31,40)

Pretension of tendon Tpre ton 1285

Outer diameter of tendon OD cm 71.1

Inner diameter of tendon ID cm 65.0

Length of tendon Lt m 969

Stiffness of tendon Ke N/m 1.36× 107

Four different sets of panelization are tested. Because of the symmetry, only a quarter of the model is

built and meshed in order to speed up the computations. As shown in Figure 8, the hydrodynamic behaviors

converge as the number of panel increases. Based on the convergence tests, the mesh size is set to 2.5 m in the

following hydrodynamic performance analysis and overall optimization process. As shown in Figure 8(a), the

non-dimensional heave added mass coefficient µ33 varies between 0.6 and 0.7 as the wave period varies from 3

sec to 30 sec. Meanwhile, by using 4000 panels, the maximum added mass is approximately 0.62 around 12 sec.

The non-dimensional radiation damping coefficient λ33, plotted in Figure 8(b), drops to a small number as wave

period goes to around 7.5 sec and 14 sec. The non-dimensional first-order wave exciting force in heave reaches

the minimum around the wave period of 6.5 sec, which is caused by the cancellation effect between pontoons.

As shown in Figure 8(c) and (d), the local hump in heave RAO is around 4 sec, while no hump can be observed

in heave exciting force. This is due to the natural period of the TLP in heave. It is about 4 sec, computed by

Tn = 2π

√

M +A33

K
(28)
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where K = 12Ke is the stiffness in heave. Large motion amplitude can be induced by the small wave load in

resonant condition.

3.2. RAOs in regular waves

The response amplitude operators (RAOs) of 6 DoF are essential for further motion predictions in irregular

waves. Totally four different wave headings, 0◦, 15◦, 30◦, and 45◦, are computed with consideration of the

symmetric hull configuration. The numerical results are presented in Figure 9. As shown, the heave RAOs are

relatively small comparing with the other two translational motion modes. In addition, the roll and pitch RAOs

are smaller than yaw RAOs. It confirms that the TLP is stiff out of the waterplane (heave, roll, and pitch) and

flexible within the waterplane (sway, surge, and yaw). As illustrated in Figure 9(c), the heave RAOs are not

sensitive to wave headings. The heave RAOs converge to a constant value when the incident wave period goes

to infinity. The convergency value can be solved by static equilibrium equation, which can be written as

lim
T→∞

RAOheave =
ρgAw

ρgAw +Ke
(29)

where T denotes the period of regular wave, ρ the density of water, g the acceleration of gravity, Aw the

waterplane area of the platform, Ke the stiffness induced by the total tendons. In the present study, the

theoretical solution of heave RAOs at zero frequency is 0.057, which is consistent with the variation tendency

obtained by numerical computations, as shown in Figure 9(c).

It should be noted that the tendon tension RAOs are important design criteria for the TLP. As shown in

Figure 10, the tendons are labeled. No.2, No.5, No.8, and No.11 tendons are selected for the following analyses.

The corresponding tendon tension RAOs are illustrated in Figure 11. As shown, the wave heading can affect

the tendon tension RAOs significantly when the incident wave period is less than 20 sec. As the wave period

increases, all tendon tension RAOs converge to a same constant value.

3.3. Maximum response evaluation in irregular waves

In the present study, the MPM responses are computed based on Rayleigh distribution. 100-year hurricane

condition in west central Gulf of Mexico is adopted (API RP 2MET, 2014) as the survival condition. JONSWAP

wave spectrum is applied and the wave parameters are listed in Table 4.

Table 4: Wave parameters of JONSWAP spectrum for survival condition.

Hs (m) Tp (sec) Tz (sec) γ σa σb

12.3 14.4 11.17 3.3 0.07 0.09

The computed response spectra in long-crest waves are plotted in Figure 12. As shown in Figure 12(a), the

heave motion response spectra are almost the same for different wave directions. As shown in Figure 12(b), the

peak periods of the surge motion response spectra are also the same (near 15 sec) for different wave headings.

Figure 12(c) ∼ (f) illustrate the comparison of tendon tension for four different wave headings. The responses

of No.5 and No.8 tendons are more significant than the other two tendons. This is due to the fact that heave

and pitch motions are almost out of phase (phase shift is around 180◦) for wave periods between 10 and 15 sec,

so that the vertical motions at No.5 and No.8 tendon tips are larger than those for No.2 and No.11 tendons.
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Figure 8: Convergence test for the base TLP. (a) Non-dimensional added mass in heave; (b) Non-dimensional radiation damping

in heave; (c) Non-dimensional first-order wave exciting force in surge; (d) Non-dimensional first-order wave exciting force in heave;

(e) Surge RAOs; (f) Heave RAOs. A is the amplitude of incident wave; L is the characteristic length of the TLP.
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Figure 10: The arrangement plan of twelve tendons and the indexes. Each column is attached to three tendons and the angle

between tendons is α = 45◦ in per corner.
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Figure 11: RAOs of different tendons in regular waves with different wave headings. (a) No.2 tendon; (b) No.5 tendon; (c) No.8

tendon; (d) No.11 tendon. A is the amplitude of incident wave.
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Figure 12: Response spectra in long-crest waves. (a) Surge; (b) Heave; (c) No.2 tendon tension; (d) No.5 tendon tension; (e) No.8

tendon tension; (f) No.11 tendon tension. The survival condition: Hs = 12.3 m; Tp = 14.4 sec; γ = 3.3; wave spreading function

= none.

19



The response spectra in short-crest waves with a wave spreading function (cos2) are computed and presented

in Figure 13.

The statistics of the motion and tension responses are listed in Table 5. Based on Rayleigh distribution,

the MPM responses during 3-hour simulations are proportional to the root mean squares of the zero spectral

moments. Table 5 shows that the maximum heave and surge motion responses occur at 0◦ wave heading in

long-crest wave. Because of the symmetry of the hull, the worst wave headings are 0◦, 90◦, 180◦, and 270◦.

Compared with the dynamic tensions of the other three different tendons at each corner of the platform, the

dynamic tension of No.8 tendon reaches the maximum in 45◦ wave heading.

Table 5: The zero spectral moment (m0) of different responses in survival condition.

Wave Heading Heave Surge Tendon2 Tendon5 Tendon8 Tendon11

Unit deg m2s/rad m2s/rad kN2s/rad kN2s/rad kN2s/rad kN2s/rad

Long crest 0 2.32E-03 3.48E+00 3.82E+11 1.44E+12 1.44E+12 3.82E+11

Long crest 15 2.27E-03 3.27E+00 5.72E+11 9.58E+11 1.98E+12 2.61E+11

Long crest 30 2.18E-03 2.68E+00 8.59E+11 6.20E+11 2.52E+12 2.71E+11

Long crest 45 2.14E-03 1.83E+00 1.06E+12 3.96E+11 2.80E+12 3.96E+11

Short crest 0 2.22E-03 2.65E+00 5.36E+11 1.50E+12 1.50E+12 5.36E+11

Short crest 15 2.22E-03 2.53E+00 5.99E+11 1.17E+12 1.79E+12 5.02E+11

Short crest 30 2.22E-03 2.22E+00 6.55E+11 8.76E+11 2.00E+12 5.34E+11

Short crest 45 2.22E-03 1.79E+00 6.77E+11 6.57E+11 2.07E+12 6.57E+11

3.4. Airgap computations

The airgap in survival condition is a critical design criterion as it is correlated with wave slamming. The

airgap is computed by Eqn.(10). With consideration of diffraction and radiation effects induced by floating

body, wave elevations under the deck should be computed.

The convergence tests for wave elevations are carried out in order to ensure the validity of the present

numerical method. The results of the convergence tests are illustrated in Figure 14(a). The predicted wave

elevation at the probe (21.5 m, 21.5 m, 0 m) converges in the four different wave headings and becomes a

constant as the number of panels increases over 3000. Thus, the mesh size is set to 2.5 m, corresponding to

approximately 3000 panels. The maximum wave elevations always occur around the columns, but the wave

elevation does not converge as the distance between probe and column decreases. As illustrated in Figure 14(b),

there are totally 9 probes placed near the column in order to determine the proper distance to the column for

the following analyses. It can be seen that the maximum wave elevation occurs at 1 m ∼ 1.25 m away from

the column. When the distance to column is less than 1 m, the wave elevation decreases instead, which is not

realistic. Therefore, the nearest numerical wave probes for airgap prediction are placed 1 m away from the

column.

As shown in Figure 15, totally 341 numerical wave probes are placed on the still water surface. Similar

to other response analyses, the wave elevation RAOs with four different wave headings in regular waves are

computed and plotted in Figure 16. The selected wave period is 11.5 sec close to the zero-upcrossing period
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Figure 13: Response spectra in short-crest waves. (a) Surge; (b) Heave; (c) No.2 tendon tension; (d) No.5 tendon tension; (e) No.8

tendon tension; (f) No.11 tendon tension. the survival condition: Hs = 12.3 m; Tp = 14.4 sec; wave spreading function = cos2.
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Figure 14: The convergence tests for estimating wave elevations. (a) Wave elevation at point (21.5 m, 21.5 m, 0 m) with increasing

number of panels; (b) Wave elevation with decreasing distance to the column.

of the survival condition. As shown in the contour plot, the maximum wave elevation, about 1.4 times of the

incoming wave amplitude, occurs around the northeast column (NE Col). As shown in Figure 17, the 3-hour

MPM responses of wave elevation in irregular waves are plotted in the contours. The maximum wave elevation

is 14.7 m.

It should be noted that the setdown of the TLP has a significant impact on airgap. When the platform

has an offset, induced by mean horizontal environmental load, the draft of the platform will increase because of

the restraint of tendons. The length of the tendons is assumed to be a constant when the offset is small relative

to water depth. In general, the horizontal displacement of the platform is usually less than 5% of the water

depth. In the present study, the maximum setdown is assumed to be 2 m. As described in Eqn.(10), both the

vertical motion of the platform and the wave elevation should be taken into account for airgap computations.

The airgap contour is plotted in Figure 18. As presented, the minimum airgap occurs near the northeast column

(NE Col). The reason is that the maximum wave elevation occurs there, and the vertical motion (heave, roll,

and pitch) is very small so that it has a negligible impact on the airgap. As shown in Figure 18(d), the most

probable minimum (MPM) airgap in survival condition is approximately 8.25 m.

4. Optimization Based on Surrogate Model

4.1. Objectives and constraints for optimization

The maximum dynamic tendon tension and the total weight of the platform are selected as the two ob-

jectives. The maximum dynamic tendon tension represents the safety, and the total weight means the cost.

The objective functions should be optimized for better safety and cost. In the previous section, the dynamic

tension responses of four typical tendons in survival condition are analyzed and the MPM response occurs at

No.8 tendon for 45◦ wave heading. Therefore, only No.8 tendon is computed and analyzed during the opti-

mization process. In the present study, three constraints are adopted including the maximum heave motion,

the maximum surge motion, and the minimum airgap for functional requirements. Considering risers’ limited

compensation ability for motions, the heave motion should be less than 0.2 m and the surge motion should
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Figure 15: The arrangement plan of probes (red circles) for estimating the wave elevations on the still water surface z = 0. The

blue star symbol represents the point (21.5 m, 21.5 m, 0 m) used for airgap analysis in optimization section.

be less than 7 m in optimization module. To avoid wave slamming, the airgap should be larger than 8 m as

the effects of the wind and current are neglected at the present stage. The minimum airgap induced by wave

elevation and combined motion occurs around the northeast column (NE Col) for 45◦ wave heading. Thus, in

order to save computing time, the numerical wave probes are only arranged near the NE Col.

4.2. Surrogate model

The total weight of the platform is estimated based on the principal dimensions. However, the tendon ten-

sion responses, motion responses in 6 DoF, and airgap should be evaluated through direct numerical simulations.

The RBF models are built to estimate the performances of different TLPs instead of numerical simulations.

The major task for building a RBF model is to select a proper formal parameter to minimize the prediction

error. The range of formal parameter is between 0 and 2 in general (Han, 2015). Through the leave-one-out

cross validation (LOOCV), the prediction errors with different formal parameters are computed and listed in

Table 6. The results are also illustrated in Figure 19.
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Figure 16: The contour of wave elevation RAOs in regular waves. The wave elevation is non-dimensionalized by incident wave

amplitude. Wave heading: (a) β = 0◦; (b) β = 15◦; (c) β = 30◦; (d) β = 45◦. Wave period T = 11.5 sec.
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Figure 17: The contour of wave elevations (MPM in 3 hours) in long-crest waves. Hs = 12.3 m; Tp = 14.4 sec; Spreading function

= none; Wave heading: (a) β = 0◦; (b) β = 15◦; (c) β = 30◦; (d) β = 45◦.
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Figure 18: The contour of airgaps in long-crest waves. Hs = 12.3 m; Tp = 14.4 sec; Spreading function = none; Wave heading: (a)

β = 0◦; (b) β = 15◦; (c) β = 30◦; (d) β = 45◦.
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Figure 19: The average errors of RBF models by LOOCV with changing formal parameter. (a) Heave motion; (b) Surge motion;

(c) Airgap; (d) Dynamic tendon tension. The maximum and minimum values are all MPM.

Table 6: The average errors of MPM with different formal parameters.

Formal parameter Heave motion response Surge motion response Airgap Tendon tension

0.00 1.27E-03 m 1.04E-02 m 2.23E-02 m 16.88 kN

0.25 9.94E-04 m 8.66E-03 m 1.92E-02 m 14.20 kN

0.50 7.72E-04 m 7.16E-03 m 1.72E-02 m 12.08 kN

0.75 6.04E-04 m 6.00E-03 m 1.64E-02 m 10.43 kN

1.00 4.73E-04 m 5.21E-03 m 1.67E-02 m 9.28 kN

1.25 3.73E-04 m 4.64E-03 m 1.77E-02 m 8.68 kN

1.50 3.00E-04 m 4.20E-03 m 1.90E-02 m 8.48 kN

1.75 2.49E-04 m 3.84E-03 m 2.04E-02 m 8.50 kN

2.00 2.19E-04 m 3.54E-03 m 2.17E-02 m 8.62 kN

As shown in Figure 19, the best formal parameters of RBF models for evaluating heave, surge, airgap, and

tendon tension are 2.0, 2.0, 0.75, and 1.5, respectively. After determining the formal parameters of different
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Figure 20: The variations of the maximum dynamic tendon tension with total 5 design variables based on RBF model. (a) Draft;

(b) Column spacing; (c) Column diameter; (d) Pontoon height; (e) Pontoon width; (f) Pontoon width and height.

RBF models, the performances of the TLPs with different hull forms can be computed using surrogate models.

As illustrated in Figure 20, the variation tendencies of the tendon tension response are obtained by varying one

dimension while the other four keeping the same. As can be observed, the maximum dynamic tendon tension

decreases when the draft, column spacing, or column diameter increase. In contrast, the maximum dynamic

tension has a positive correlation with pontoon height and width.

4.3. Pareto-optimal solutions

Based on the established surrogate models, NSGAII is employed for optimization, in which the population

size and maximum generation are both set to 100. Finally, totally 30 individuals, which are non-dominated of

each other, are found to form Pareto-optimal solutions. The optimal designs are sorted and ranked with the

increase of tendon tension and the decrease of total weight, as listed in Table 7.
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Table 7: The Pareto-optimal solutions obtained by utilizing NSGAII.

Draft CS CD PH PW Tmax WT

Unit m m m m m 103 kN 104 ton

01 34.08 65.65 21.75 7.20 9.03 4.92 4.08

02 34.01 65.46 21.41 7.25 9.03 4.93 4.03

03 34.02 65.60 21.16 7.25 9.04 4.94 3.99

04 33.97 65.55 20.71 7.24 9.03 4.97 3.92

05 33.94 65.45 20.43 7.22 9.06 4.99 3.88

06 34.08 65.51 20.02 7.22 9.03 5.00 3.82

07 33.94 65.40 19.77 7.27 9.03 5.04 3.79

08 33.82 65.54 19.48 7.25 9.04 5.06 3.74

09 33.82 65.53 19.28 7.23 9.03 5.07 3.72

10 33.90 65.49 18.90 7.25 9.03 5.10 3.67

11 33.74 65.06 18.76 7.25 9.03 5.14 3.64

12 33.79 65.28 18.29 7.22 9.03 5.18 3.58

13 33.45 65.11 18.21 7.23 9.02 5.23 3.56

14 33.30 64.65 18.14 7.23 9.01 5.28 3.55

15 32.08 64.97 18.21 7.23 9.04 5.36 3.54

16 31.12 64.72 18.15 7.22 9.03 5.43 3.51

17 29.03 65.28 18.16 7.22 9.02 5.53 3.47

18 28.24 64.03 18.07 7.21 9.01 5.68 3.44

19 27.99 63.57 18.06 7.20 9.00 5.75 3.43

20 28.11 62.69 18.07 7.24 9.01 5.82 3.43

21 28.02 60.44 18.01 7.21 9.00 5.96 3.40

22 28.07 59.57 18.01 7.21 9.00 6.01 3.40

23 28.00 58.89 18.00 7.20 9.00 6.08 3.39

24 28.17 57.03 18.05 7.21 9.00 6.20 3.39

25 28.08 56.10 18.00 7.20 9.00 6.28 3.37

26 27.98 55.42 18.00 7.20 9.00 6.34 3.36

27 28.16 54.62 18.00 7.21 9.00 6.41 3.36

28 27.90 54.00 18.00 7.20 9.00 6.53 3.35

29 27.90 54.00 18.00 7.20 9.00 6.53 3.35

30 27.90 54.00 18.00 7.20 9.00 6.53 3.35

Meanwhile, the optimization results are verified by direct numerical simulations to ensure the accuracy of

the surrogate model. The comparison of optimization results with the simulated ones and all sample points

are illustrated in Figure 21. The rhombus symbol in the plot represents the initial design. The vertical and

horizontal axes passing that point divide the plot into four regions. The points shown in bottom left region mean

29



5 5.5 6 6.5 7 7.5 8 8.5
3.2

3.4

3.6

3.8

4

4.2

4.4

Max tendon tension (103 kN)

T
o
ta
l
w
ei
g
ht

(1
0
4
to
n
s)

 

 

sample points

Surrogate model

Direct numerical simulation
Initial design

Figure 21: 30 Pareto-optimal solutions obtained by NSGAII based on RBF model and compared with direct numerical simulations.

that the designs are better than the initial design in terms of the two objectives, total weight and maximum

tendon tension. The top left and bottom right regions are much better than the initial design in terms of

dynamic tendon tension and total weight, respectively.

By comparing the results by surrogate model and numerical simulations, it shows that the maximum

relative errors are less than 2.5%, as illustrated in Figure 22. This confirms the surrogate model can provide

results with satisfactory accuracy. Moreover, the constraints of the Pareto-optimal solutions are all computed

and illustrated in Figure 23. As shown, all constraints are fulfilled for the functional requirements.

Based on the 30 Pareto-optimal solutions obtained by optimization procedure, the variation tendencies

of five design variables are illustrated in Figure 24. The x-axis represents the number of the Pareto-optimal

solutions. As the number grows, the dynamic tendon tension increases while the total weight decreases. As

shown in Figure 24(d) and (e), both the pontoon width and height maintain at the lower bound among 30 Pareto-

optimal solutions. This suggests decreasing pontoon width and height can not only decrease the dynamic tendon

tension but also reduce the total weight, which is consistent with the results by surrogate model shown in Figure

20(d) and (e). Different from pontoon width and height, increasing draft, column spacing, and column diameter

can help reduce the dynamic tendon tension. This can also be observed in Figure 20(a), (b), and (c). The

three design variables, including draft, column spacing, and column diameter, are all non-dimensionalized by

the principle dimensions of initial design, and their variation tendencies are illustrated in Figure 24(f). As

shown, the three design variables change in sequence. As the dynamic tendon tension decreases, the column

spacing first increases from the lower bound to the upper bound. Then, the draft starts to increase. When

both column spacing and draft reach their upper bound, the column diameter begins to increase from the lower

bound to the upper bound. In order to validate the optimization results, dynamic tendon tension RAOs of the

initial design and case No.1, No.11, No.21, and No.30 Pareto-optimal solutions are compared in Figure 25. The
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Figure 22: The relative error between the predictions using surrogate model and direct numerical simulations.
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Figure 23: The constraint values of 30 Pareto-optimal solutions. (a) Maximum heave motion must less than 0.2 m; (b) Maximum

surge motion must less than 7 m; (c) Minimum airgap must more than 8 m.

31



1 5 10 15 20 25 30

28

29

30

31

32

33

34

Number of Pareto-optimal solutions

D
ra
ft
(m

)

(a)

1 5 10 15 20 25 30

54

56

58

60

62

64

66

Number of Pareto-optimal solutions

C
o
lu
m
n
sp
a
ci
n
g
(m

)

 

 

(b)

upper bound

initial value
lower bound

1 5 10 15 20 25 30

18

19

20

21

22

Number of Pareto-optimal solutions

C
o
lu
m
n
d
ia
m
et
er

(m
) (c)

1 5 10 15 20 25 30

7.5

8

8.5

Number of Pareto-optimal solutions

P
o
nt
o
o
n
h
ei
g
ht

(m
)

(d)

1 5 10 15 20 25 30

9

9.5

10

10.5

11

Number of Pareto-optimal solutions

P
o
nt
o
o
n
w
id
th

(m
)

(e)

1 5 10 15 20 25 30
0.85

0.9

0.95

1

1.05

1.1

Number of Pareto-optimal solutions

D
im

en
si
o
n
le
ss

co
effi

ci
en
t (f)

 

 

Draft
CS
CD

Figure 24: The variation of five design variables with 30 Pareto-optimal solutions. (a) Draft; (b) Column spacing; (c) Column

diameter; (d) Pontoon height; (e) Pontoon width; (f) Non-dimensional draft, column spacing, and column diameter.
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Figure 25: Tendon tension RAOs of four Pareto-optimal solutions and the initial design. (a) No.2 tendon; (b) No.5 tendon; (c)

No.8 tendon; (d) No.11 tendon. The maximum tendon tension of Case No.1 optimal design: 4920 kN; Case No.11 optimal design:

5140 kN; Case No.21 optimal design: 5960 kN; Case No.30 optimal design: 6530 kN; initial design: 6170 kN.

third peak affects the performance of the TLP greatly because most of wave energy concentrates between wave

period 10 sec and 15 sec. In this region, the maximum dynamic tension of No.8 tendon is the largest compared

with the others. As shown in Figure 25, the maximum tendon tension becomes larger as case number increases.

Although case No.30 seems to converge to the initial design value, its weight is much smaller than the initial

one as shown in Table 3 and Table 7. Therefore, the proposed method is superior.

Based on the above analyses, the most efficient modification strategy for decreasing the dynamic tendon

tension is found. Larger column spacing should be considered first in order to decrease the maximum dynamic

tendon tension. When the column spacing can not be increased due to functional limits, the draft and column

diameter should be increased in sequence. Following the above mentioned design modification strategy, the total

weight of the TLP can be minimized most efficiently than the other sequences of design modification. Moreover,

it is suggested that the pontoon width and height should be sized as small as possible with considering the other

design criteria, such as the minimum pontoon volume for ballast water requirement.
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5. Conclusions

An Innovative TLP Optimization Program (ITOP) has been developed to solve the multi-objective opti-

mization problem for a TLP. Hull draft, column spacing, column diameter, pontoon height, and pontoon width

are selected as design variables. The objective functions include the maximum dynamic tendon tension and

the total weight of the platform, with three constraints being the maximum heave motion, the maximum surge

motion, and the minimum airgap. A surrogate model based on radial basis function (RBF) has been built and

adopted to estimate the hydrodynamic performances of the TLPs with different hull forms. A multi-objective

evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGAII), is applied to select for the

Pareto-optimal solutions.

The hydrodynamic behavior of the TLP is studied first. By examining the numerical results, it is revealed

that:

I) The maximum heave and surge motion responses occur in 0◦ wave heading in long-crest waves.

II) The MPM dynamic tendon tension occurs at No.8 tendon in 45◦ wave heading in survival condition.

III) The minimum airgap occurs near the NE Col because the maximum wave elevation occurs there and the

vertical motion of the platform is very small.

Multi-objective optimization based on surrogate model is performed for the TLP. It is found that:

I) The maximum dynamic tension shows positive correlation with pontoon height and width, but negative

correlation with draft, column spacing, and column diameter.

II) The most efficient design modification strategy is found to suppress the dynamic tendon tension. As found,

the column spacing, draft, and column diameter should be increased in sequence. By this strategy, the dynamic

tendon tensions can be reduced and the total structural weight of the platform can be minimized as much as

possible.
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