68 research outputs found

    Microscopic Description of Super Heavy Nuclei

    Full text link
    The results of extensive microscopic Relativistic Mean Field (RMF) calculations for the nuclei appearing in the alpha - decay chains of recently discovered superheavy elements with Z = 109 to 118 are presented and discussed. The calculated ground state properties like total binding energies, Q values, deformations, radii and densities closely agree with the corresponding experimental data, where available. The double folding (t-rho-rho) approximation is used to calculate the interaction potential between the daughter and the alpha, using RMF densities along with the density dependent nucleon - nucleon interaction (M3Y). This in turn, is employed within the WKB approximation to estimate the half lives without any additional parameter for alpha - decay. The half lives are highly sensitive to the Q values used and qualitatively agree with the corresponding experimental values. The use of experimental Q values in the WKB approximation improves the agreement with the experiment, indicating that the resulting interaction potential is reliable and can be used with confidence as the real part of the optical potential in other scattering and reaction processes.Comment: Accepted for publication in Annals of Physics (NY

    Deuteron frozen spin polarized target for nd experiements at the VdG accelerator of Charles University

    Full text link
    A frozen spin polarized deuteron target cooled by the 3He/4He dilution refrigerator is described. Fully deuterated 1,2-propanediol was used as a target material. Deuteron vector polarization about 40% was obtained for the target in the shape of a cylinder of 2 cm diameter and 6 cm length. The target is intended for a study of 3N interactions at the polarized neutron beam generated by the Van de Graaff accelerator at the Charles University in Prague

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.

    Relative luminosity measurement of the LHC with the ATLAS forward calorimeter

    Full text link
    In this paper it is shown that a measurement of the relative luminosity changes at the LHC may be obtained by analysing the currents drawn from the high voltage power supplies of the electromagnetic section of the forward calorimeter of the ATLAS detector. The method was verified with a reproduction of a small section of the ATLAS forward calorimeter using proton beams of known beam energies and variable intensities at the U-70 accelerator at IHEP in Protvino, Russia. The experimental setup and the data taking during a test beam run in April 2008 are described in detail. A comparison of the measured high voltage currents with reference measurements from beam intensity monitors shows a linear dependence on the beam intensity. The non-linearities are measured to be less than 0.5 % combining statistical and systematic uncertainties.Comment: 16 page

    Measurement of the beam-helicity asymmetry in photoproduction of π0η pairs on carbon, aluminum, and lead

    Get PDF
    The beam-helicity asymmetry was measured, for the first time, in photoproduction of π0η pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for π0η pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the D33 partial wave with the ηΔ(1232) intermediate state

    First measurement of helicity-dependent cross sections in π0η photoproduction from quasi-free nucleons

    Get PDF
    The helicity-dependent cross sections for the photoproduction of π0η\pi^0\eta pairs have been measured for the first time. The experiment was performed at the tagged photon facility of the Mainz MAMI accelerator with the combined Crystal Ball - TAPS calorimeter. The experiment used a polarized deuterated butanol target and a circularly polarized photon beam. This arrangement allowed the σ1/2\sigma_{1/2} (photon and target spin antiparallel) and σ3/2\sigma_{3/2} (parallel spins) components to be measured for quasi-free production of π0η\pi^0\eta pairs off protons and neutrons. The main finding is that the two helicity components contribute identically, within uncertainties, for both participant protons and neutrons. The absolute couplings for protons and neutrons are also identical. This means that nucleon resonances contributing to this reaction in the investigated energy range have almost equal electromagnetic helicity couplings, A1/2n,pA_{1/2}^{n,p} and A3/2n,pA_{3/2}^{n,p}. Identical couplings for protons and neutrons are typical for Δ\Delta resonances and identical A1/2A_{1/2} and A3/2A_{3/2} components are only possible for J3/2J\geq 3/2 states, which constrains possible contributions of nucleon resonances.Comment: accepted for publication in Phys. Lett.

    Threshold π<sup>0</sup> photoproduction on transverse polarised protons at MAMI

    Get PDF
    Polarisation-dependent differential cross sections σTσT associated with the target asymmetry T have been measured for the reaction View the MathML sourceγp→→pπ0 with transverse target polarisation from π0π0 threshold to photon energies of 190 MeV. The data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Results for σTσT have been used in combination with our previous measurements of the unpolarised cross section σ0σ0 and the beam asymmetry Σ for a model-independent determination of S- and P -wave multipoles in the π0π0 threshold region, which includes for the first time a direct determination of the imaginary part of the E0+E0+ multipole

    First measurement of the polarization observable E and helicity-dependent cross sections in single π0 photoproduction from quasi-free nucleons

    Get PDF
    The double-polarization observable E and the helicity-dependent cross sections σ1/2 and σ3/2 have been measured for the first time for single π0 photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0 meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π0N final state. A comparison to data measured with a free proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ1/2 and σ3/2 components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore