132 research outputs found

    Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss

    Full text link
    We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent---in a loose sense---of Hawking radiation

    Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties

    Full text link
    [EN] A series of hybrid hydrogels of poly(2-hydroxyethyl acrylate), PHEA, and graphene oxide, GAO, with GAO content up to 2 wt % has been prepared by in situ polymerization. Because PHEA has been used as biomaterial in various applications, has a side chain with the hydroxyl functional group and its mechanical properties are poor, it is a good candidate for reinforcement with GAO. Fourier transform (infrared) spectroscopy, atomic force microscopy, differential scanning calorimetry, the thermal, mechanical, and water sorption properties of neat PHEA and PHEA/GAO composites have been studied in order to elucidate the dispersion and interaction between both components. An increase in the water diffusion coefficient and dramatic changes in its mechanical proper- ties are the most remarkable results. Thus, at a nanofiller load of 2 wt %, the novel materials present an increased diffusion coeffi- cient higher than 380% and the elastic modulus is enhanced by more than 650% in dry state and by more than 100% in swollen state, both compared to neat PHEA. These results have been attributed to the excellent interaction between the matrix, PHEA, and the reinforcement, GAO, and could open the door to new applications in the field of biomaterials with higher structural requisites.This work was supported by Project GV/2016/067 of the Generalitat Valenciana. AFM, and the stress-strain assay was conducted by the authors in the Microscopy Service of the Universitat Politecnica de Valencia, whose advice is greatly appreciated. The authors acknowledge M. Monleon-Pradas for his helpful discussions.Sánchez-Correa, FV.; Vidaurre Agut, CM.; Serrano Aroca, Á.; Campillo Fernández, AJ. (2018). Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. Journal of Applied Polymer Science. 135(15). https://doi.org/10.1002/app.46158S1351

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Investigation of a Novel 24-Slot/14-Pole Six-Phase Fault-Tolerant Modular Permanent-Magnet In-Wheel Motor for Electric Vehicles

    No full text
    In this paper, a six-phase fault-tolerant modular permanent magnet synchronous machine (PMSM) with a novel 24-slot/14-pole combination is proposed as a high-performance actuator for wheel-driving electric vehicle (EV) applications. Feasible slot/pole combinations of the fractional-slot concentrated winding six-phase PMSM are elicited and analyzed for scheme selection. The novel 24-slot/14-pole combination is derived from the analysis and suppression of the magnetomotive force (MMF) harmonics. By making use of alternate-teeth-wound concentrated winding configuration, two adjacent coils per phase and unequal teeth widths, the phase windings of the proposed machine is magnetically, thermally isolated, which offers potentials of modular design and fault tolerant capability. Taking advantage of the leakage component of winding inductance, 1.0 per unit short-circuit current is achieved endowing the machine with short-circuit proof capability. Optimal design of essential parameters aiming at low eddy current losses, high winding factor and short-circuit-proof ability are presented to pave the way for a high-quality system implementation

    Mechanical Properties of Hybrid Ultra-High Performance Engineered Cementitous Composites Incorporating Steel and Polyethylene Fibers

    No full text
    This paper presents the authors&rsquo; newly developed hybrid ultra-high performance (HUHP) engineered cementitious composite (ECC) with steel (ST) and polyethylene (PE) fibers. From this point on it will be referred to as HUHP-ECC. The volumes of steel and PE fibers were adjusted to obtain different mechanical properties, including compressive strength, tensile, and flexural properties. We found that tensile and flexural properties, including bending strength and ductility indexes, increased with higher PE fiber amounts but reduced with the increased ST fiber volume. Notably, the compressive strength had the opposite tendency and decreased with increases in the PE volume. The ST fiber had a significantly positive effect on the compressive strength. The fluidity of HUHP-ECC improved with the increasing amount of ST fiber. The pseudo strain-hardening (PSH) values for all the HUHP-ECC mixtures were used to create an index indicating the ability of strain capacity; thus, the PSH values were calculated to explain the ductility of HUHP-ECC with different fiber volumes. Finally, the morphology of PE and ST fibers at the fracture surface was observed by an environmental scanning electron microscope (ESEM)
    corecore