1,455 research outputs found
Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions — Part II : Parametric study and proposed design equations
A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results
Huntington’s Disease protein huntingtin associates with its own mRNA
Background: The Huntington's disease (HD) protein huntingtin (Htt) plays a role in multiple cellular pathways. Deregulation of one or more of these pathways by the mutant Htt protein has been suggested to contribute to the disease pathogenesis. Our recent discovery-based proteomics studies have uncovered RNA binding proteins and translation factors associated with the endogenous Htt protein purified from mouse brains, suggesting a potential new role for Htt in RNA transport and translation. Objective: To investigate how Htt might affect RNA metabolism we set out to purify and analyze RNA associated with Htt. Methods: RNA was extracted from immunopurified Htt-containing protein complexes and analyzed by microarrays and RNA-Seq. Results: Surprisingly, the most enriched mRNA that co-purified with Htt was Htt mRNA itself. The association of Htt protein and Htt mRNA was detected independent of intact ribosomes suggesting that it is not an RNA undergoing translation. Furthermore, we identified the recently reported mis-spliced Htt mRNA encoding a truncated protein comprised of exon 1 and a portion of the downstream intron in the immunoprecipitates containing mutant Htt protein. We show that Htt protein co-localizes with Htt mRNA and that wild-type Htt reduces expression of a reporter construct harboring the Htt 3' UTR. Conclusions: HD protein is found in a complex with its own mRNA and RNA binding proteins and translation factors. Htt may be involved in modulating its expression through post-transcriptional pathways. It is possible that Htt shares mechanistic properties similar to RNA binding proteins such as TDP-43 and FUS implicated in other neurodegenerative diseases
Magnetic field effects on the density of states of orthorhombic superconductors
The quasiparticle density of states in a two-dimensional d-wave
superconductor depends on the orientation of the in-plane external magnetic
field H. This is because. in the region of the gap nodes, the Doppler shift due
to the circulating supercurrents around a vortex depend on the direction of H.
For a tetragonal system the induced pattern is four-fold symmetric and, at zero
energy, the density of states exhibits minima along the node directions. But
YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes
two-fold symmetric with the position of the minima occuring when H is oriented
along the Fermi velocity at a node on the Fermi surface. The effect of impurity
scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure
3D-HST+CANDELS : the evolution of the galaxy size-mass distribution since z=3
Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R eff∝(1 + z)–1.48, and moderate evolution for the late-type population, R eff∝(1 + z)-0.75Peer reviewedFinal Accepted Versio
Quantum discord evolution of three-qubit states under noisy channels
We investigated the dissipative dynamics of quantum discord for correlated
qubits under Markovian environments.
The basic idea in the present scheme is that quantum discord is more general,
and possibly more robust and fundamental, than entanglement. We provide three
initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W
state and analyse the time evolution of the quantum discord under various
dissipative channels such as:
Pauli channels , , and , as well as
depolarising channels. Surprisingly, we find that under the action of Pauli
channel , the quantum discord of GHZ state is not affected by
decoherence. For the remaining dissipative channels, the W state is more robust
than the GHZ state against decoherence. Moreover, we compare the dynamics of
entanglement with that of the quantum discord under the conditions in which
disentanglement occurs and show that quantum discord is more robust than
entanglement except for phase flip coupling of the three qubits system to the
environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ
Exact solution of Schrodinger equation for Pseudoharmonic potential
Exact solution of Schrodinger equation for the pseudoharmonic potential is
obtained for an arbitrary angular momentum. The energy eigenvalues and
corresponding eigenfunctions are calculated by Nikiforov-Uvarov method.
Wavefunctions are expressed in terms of Jacobi polynomials. The energy
eigenvalues are calculated numerically for some values of l and n with n<5 for
some diatomic molecules.Comment: 10 page
Effective Field Theory for Layered Quantum Antiferromagnets with Non-Magnetic Impurities
We propose an effective two-dimensional quantum non-linear sigma model
combined with classical percolation theory to study the magnetic properties of
site diluted layered quantum antiferromagnets like
LaCuMO (MZn, Mg). We calculate the staggered
magnetization at zero temperature, , the magnetic correlation length,
, the NMR relaxation rate, , and the N\'eel temperature,
, in the renormalized classical regime. Due to quantum fluctuations we
find a quantum critical point (QCP) at at lower doping than
the two-dimensional percolation threshold . We compare our
results with the available experimental data.Comment: Final version accepted for publication as a Rapid Communication on
Physical Review B. A new discussion on the effect of disorder in layered
quantum antiferromagnets is include
Three-dimensional conceptual model for service-oriented simulation
In this letter, we propose a novel three-dimensional conceptual model for an
emerging service-oriented simulation paradigm. The model can be used as a
guideline or an analytic means to find the potential and possible future
directions of the current simulation frameworks. In particular, the model
inspects the crossover between the disciplines of modeling and simulation,
service-orientation, and software/systems engineering. Finally, two specific
simulation frameworks are studied as examples.Comment: 7 pages, 1 figures, 3 table, Journal of Zhejiang University SCIENCE
A, 2009, 10(8): 1075-108
Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation
The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the
striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature
dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds.
Moreover, R_H is positive for hole-doped compounds and is negative for
electron-doped ones, although each of them has a similar hole-like Fermi
surface. In this paper, we give the explanation of this long-standing problem
from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We
consider seriously the vertex corrections for the current which are
indispensable to satisfy the conservation laws, which are violated within the
conventional Boltzmann transport approximation. The obtained total current J_k
takes an enhanced value and is no more perpendicular to the Fermi surface due
to the strong AF fluctuations. By virtue of this mechanism, the anomalous
behavior of R_H in high-Tc cuprates is neutrally explained. We find that both
the temperature and the (electron, or hole) doping dependences of R_H in
high-T_c cuprates are reproduced well by numerical calculations based on the
fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard
model. We also discuss the temperature dependence of R_H in other nearly AF
metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion
systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
- …