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Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensa
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We give an asymptotic analytic solution for the generic atom-laser system with gain in aD-dimensional trap,
and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth,
which creates a local-density maximum and a corresponding outward momentum component. In addition, the
solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
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I. INTRODUCTION

The description of Bose-Einstein condensate~BEC!
growth @1–4# has become important due to the need to
derstand the physics of atom lasers@5#. These recently de
veloped devices that emit coherent wavelike beams of at
promise a new generation of precision measurements, a
cations in nanotechnology, and novel tests of fundame
concepts in quantum theory. While it is possible to perfo
first-principles numerical simulations of the relevant equ
tions @6#, a great deal of physical insight can be obtain
from an analytic solution.

In this paper, we give an analytic asymptotic solution
the Gross-Pitaevskii equation describing the early stage
condensate growth in a trap. The physical insight we ob
from this is that a growing nonequilibrium condensate ha
nonuniform momentum distribution across the condensed
gion. As a result, the observed density behaves as thoug
trap frequency is increased, relative to the usual Thom
Fermi behavior@7# of an equilibrium BEC. In addition, ou
solutions show center-of-mass oscillations whose kinetic
ergy is amplified with the condensate growth. This impl
that, while BEC’s formed through evaporative cooling m
have a low temperature for their internal degrees of freed
the temperature for the center-of-mass motion is high
leading to increased noise in the velocity and direction
atom laser beams.

II. GROSS-PITAEVSKII GAIN MODEL

We start by considering a commonly used model o
one-component trapped Bose-Einstein condensate—
Gross-Pitaevskii~GP! equation@8# modified by a linear gain
term g @9#, of the form

]C~x,t !

]t
5Fg2 i S \

2m
“

21V~x!1UuCu2D GC. ~1!

HereC(x,t) is the mean-field amplitude@so thatuC(x,t)u2
is the particle number density#, m is the atomic mass, andU
is the effective interaction potential. In the treatment ofD
equal to one, two, or three space dimensions,U is given by
U54p\aL32D/m, wherea is the scattering length andL is
the confinement length. The potential termV(x) is due to an
optical or magnetic trap, which we assume is harmonic
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the simplest rotationally symmetric case, the trap potentia
given byV(x)5mv2uxu2/(2\), wherev is the trap oscilla-
tion frequency.

It is helpful to understand the physical implications of E
~1! by an analysis of the relevant time scales. In the pres
case, there are three different relevant time scales. Thes
the time scale for the condensate growth,tg51/g; the trap
oscillation time scale,tv51/v; and the ‘‘healing’’ time
scale,th51/@UuC(x0 ,t)u2#, associated with the mean-fiel
interaction potential at the condensate center of massx0.

Since current BEC’s typically have a relatively high de
sity, the healing time is usually the smallest, which results
a Thomas-Fermi~TF! type equilibrium condensate. If th
gain time scale is long enough, then one may expect
even during growth, the condensate will adiabatically follo
the TF solution. This is commonly assumed in analyzi
experimental data@1#. Another possibility is that the gain
time scale is shorter than the trap oscillation period, in wh
case we should no longer expect adiabatic TF-like behav

A. Asymptotically growing solution

To show this distinction, we now proceed to give an an
lytic nonequilibrium solution of the GP equation with gai
First, we expand the field in terms of the amplitude a
phase,

C~x,t !5A~x,t !e2 if(x,t)/AU, ~2!

and obtain the following coupled equations:

]A

]t
5gA1

\

2m
A“2f1

\

m
“f•“A, ~3!

]f

]t
5A21

mv2

2\
uxu21

\

2m S u“fu22
1

A
“

2AD . ~4!

Next, we wish to investigate possible asymptotic solutio
for long times, i.e., steadily growing solutions, valid som
time after initial nucleation of the condensate, yet before a
gain saturation has occurred. We consider first the rotat
ally symmetric case, where“25] r

21@(D21)/r #] r , with r
5uxu. Following the construction successfully used recen
in optical fiber environments@10#—and extending these to
the current multidimensional case of a trapped BEC—
suppose that the amplitude has a self-similar behavio
©2000 The American Physical Society05-1
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large time. The phase is assumed to depend on the at
density at the condensate center, and to have a uniform c
giving a radially dependent outward momentum. Thus,
seek a solution in the form of

A5l~ t ! f „r /l~ t !…, ~5!

f5
l2~ t !

2g̃t
2

mg̃

2\
r 2. ~6!

Herel(t) is a scaling function, whilet and g̃ are unknown
coefficients. Using this construction, we find, from Eqs.~3!
and ~4!,

]l~ t !

]t S f 2
r f 8

l D5gl f 2 f 8g̃r 2
D

2
l f g̃, ~7!

]l~ t !

]t S 1

g̃t
l D 5~l f !21

\ṽ2

2m
r 22

\

2m S f 9

f l2
1

D21

f lr
f 8D ,

~8!

where we have definedṽ2[v21g̃2.
From the first~amplitude! equation, the solution require

the twin conditions that

]l~ t !

]t
5S g2

Dg̃

2
D l5g̃l. ~9!

This implies that the scaling functionl grows exponentially
with time, having a solution ofl(t)5exp(g̃t), where we can
immediately solve for the growth rate, since clearlyg̃
52g/(D12). The physical interpretation of this equation
rather straightforward; the growth of the amplitude at a
radial point is reduced below the single-mode growth rateg,
due to an outward flow of atoms, which transfers part of
increased density to a larger radius. This effect increa
with dimensionality of the space.

The phase equation can now be simplified using the
that the last two terms involving derivatives have terms
1/l, and hence become exponentially smaller than the ea
terms, at long times, as the healing time becomes sma
This immediately gives the following solution forf:

f 5H A@12uxu2/R~ t !2#/t for uxu,R~ t !,

0 for uxu.R~ t !,
~10!

whereR(t) is the maximum radius given by

R~ t !5eg̃tA2\/~mtṽ2!. ~11!

The remaining unknown constantt is obtained by evalu-
ating the integralN(t)5* uC(x,t)u2dDx for the total number
of particles:

N~ t !5eg̃(D12)tS 2\

mṽ2D D/2
2CD t2(D12)/2

UD~D12!
. ~12!
01360
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Here CD is a dimension-dependent constant, withC1
52,C252p, and C354p. This gives the expected resu
that the overall atom number grows exponentially with
gain constant of 2g5g̃(D12); that is, N(t)
5N(0)exp(2gt). The reason for this apparent difference
gain constants is that the relatively slower growth in dens
at the center of the condensate is exactly compensated fo
the increase in condensate radius with time.

The constantt is solved in terms ofN(0), sothat

t5F S 2\

m D D/2 2CD

UD~D12!N~0!ṽDG 2/(D12)

. ~13!

This coincides with the healing time for a condensate w
atom numberN(0), in TF equilibrium, but with an effective
trap oscillation frequencyṽ instead ofv.

The final result for the particle number densi
uC(x,t)u25l2f 2/U is

uC~x,t !u25
e2g̃t

tU S 12
uxu2

R~ t !2D . ~14!

While this gives an asymptotic solution in terms of th
initial atom number, the solution needs to be compared w
the usual TF solution to understand the physical impli
tions. In particular, we can notice an interesting scaling
havior for the radius, as a function of the trap frequency.
the present case, the radius scales as

R}ṽ22/(D12)5~v21g̃2!21/(D12). ~15!

In equilibrium TF solutions, there is a similar behavio
except that there is no outward momentum term. As a c
sequence, the TF radius (RTF}v22/(D12)) is always larger at
a given total atom number, and the density is lower at
center, than in these nonequilibrium solutions with ga
present. The physical reason for this is simply the ra
Bose-enhanced increase in number density~and hence pres
sure! at the condensate center during the nucleation proc
This effect becomes appreciable wheng@v or tg!1/v, so
that the time scale for condensate growth is faster than
trap oscillation period.

B. Numerical results

We now turn to comparisons between the analy
asymptotic solution and exact numerical results. In Fig.
we plot the rms radiusr̄ (t) of a growing BEC versust. The
result found from the above asymptotic solution in three
mensions is simply given byr̄ (t)5A3/7R(t). This is repre-
sented by the dashed line, forg510v and N(0)510. For
comparison, the TF rms radius for the same values ofN(t) is
represented by the dotted line. The full lines correspond
the results of direct numerical simulations of the GP equat
with gain, with initial Gaussian wave functions of differen
widths. The values of other parameters are chosen to co
spond to a87Rb BEC (m51.44 kg,U355310217 m3/s) in
a trap withv/2p5100 Hz. As one can see from the grap
5-2
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ASYMPTOTIC SOLUTIONS TO THE GROSS- . . . PHYSICAL REVIEW A 63 013605
despite the initial differences, the mean radii approach
same asymptotic value of;A3/7R(t), which is different
from the TF result for the same total number of particles

The outward momentum densityp5upu „where p5
2 i\@C* (“C)2H.c.#/2… is plotted in Fig. 2, showing tha
in a growing BEC the flow of atoms from the trap cent
increases initially with the distance, reaches a maximum,
vanishes atr *R.

III. ASYMMETRIC CASE AND CENTER-OF-MASS
OSCILLATIONS

The above rotationally symmetric results can easily
generalized to asymmetric cases, where the trap oscilla
frequenciesv i in each space direction are different. In th
case, the trap potential term in Eqs.~1! and~4! is replaced by

V~x!5
m

2\ (
i 51

D

v i
2xi

2 . ~16!

Assuming again that the amplitude has a self-similar
havior at long times, one can use the previous construct
In addition, we find that a more general solution can be

FIG. 1. The rms radiusr̄ ~in a logarithmic scale! of a growing
condensate versust, for g510v. The full lines 1, 2, and 3 corre
spond, respectively, to initial Gaussian wave functions having
radii that are twice as larger as, equal to, and twice as small as

asymptotic rms radiusr̄ (0)5A3/7R(0). The dashed line is the
asymptotic result, while the dotted line corresponds to the equ
rium ~TF! solution.

FIG. 2. The momentum densityp versus the radial distanc
from the center of the trapr. The full line corresponds to the resul
ing distribution of case 1 in Fig. 1; the dashed line is the cor
sponding asymptotic solution.
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tained. Following the approach of Kohn’s theorem@11#, gen-
eralized to include gain, we allow for center-of-mass osc
lation of the growing condensate, independent of
interparticle interactions.

Thus, we seek a solution in the form of

A5l~ t ! f @Dx~ t !/l~ t !#,

f5f0~ t !1
l~ t !2

2g̃t
2

m

\
F g̃Dx~ t !2

2
1Dx~ t !• ẋ0~ t !G ,

whereDx(t)[x2x0(t), x0(t) is the center of mass, and th
dot stands for the time derivative.

Using the same procedure as before, we first find—fr
the amplitude equation—that the functionl(t) is given by

l~ t !5exp~ g̃t !, ~17!

whereg̃52g/(D12), as previously.
To treat the phase equation, in which we neglect the

term }1/l that becomes exponentially small at long time
we assume that

f 25F11F2~Dx…2,

where the functionsF1 andF2 are to be found by equating
the terms in powers ofDxi . From the terms inDxi , we find
that each component ofx0(t) satisfies the equationẍ0,i
1v ix0,i50, so that the condensate center of mass oscilla
according to

x0,i~ t !5a0,i cos~v i t1d0,i !, ~18!

wherea0,i andd0,i are the initial amplitude and phase.
By equating the terms in (Dxi…

2 and the zeroth-orde
terms, respectively, we obtain an equation forf0(t),

ḟ01
m

2h (
i 51

D

@~ ẋ0,i !
22v i

2x0,i #50,

as well as solutions toF1 andF2:

F151/t,

F252
m

2\l~ t ! (
i 51

D
~v i

21g̃2!Dxi~ t !

@Dx~ t !#2
.

Combining these together and using the solutions for
center-of-mass coordinates, we finally obtain that the so
tion for the functionf0(t) is given by

f0~ t !52~m/2\!@x0~ t !•] ẋ0~ t !#, ~19!

while the solution forf is

f 5
1

At
S 12(

i 51

D
@xi2x0,i~ t !#2

Ri~ t !2 D 1/2

, ~20!
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in the region of space where the expression in large brac
is positive, andf 50 outside that region.

The maximum radiusRi(t) in each space direction is

Ri~ t !5eg̃tA2\/~mtṽ i
2!, ~21!

where we have introducedṽ i
2[v i

21g̃2. In addition, the con-
stantt is solved, as previously, in terms ofN(0) by evalu-
ating the integral for the total number of particlesN(t)
5N(0)exp(2gt). The resulting expression fort is given by
the same equation as before, Eq.~13!, except thatṽD is
replaced by) j 51

D ṽ j . This again corresponds to the healin
time in a TF condensate, withN(0) particles and effective
trap oscillation frequenciesṽ i .

The final result for the particle number density is now

uC~x,t !u25
e2g̃t

tU S 12(
i 51

D
@xi2x0,i~ t !#2

Ri~ t !2 D . ~22!

An example showing growth of the BEC, while the conde
sate center of mass oscillates, is shown in Fig. 3.

IV. SUMMARY

The physical interpretation of these results is that
asymptotic solution with gain has a density distribution th
is similar to the TF solution, except that the trap oscillati
effective frequency is increased, withv i

2→ṽ i
25v i

21g̃2. For
a given gain constant, this has the strongest effect for we
trapped ~low-frequency! directions in an asymmetric trap
The effective frequencyṽ i only modifies the density distri
bution, since the center of mass still oscillates with the or
nal trap oscillation frequencyv i . In addition, the solution
gives an outward momentum component due to the bos

FIG. 3. Growth of a BEC with a center-of-mass oscillatio
present. Shown is the condensate densityuC(x,t)u2, as found from
the asymptotic solution in a symmetric trap, with a center-of-m
oscillation in thex direction andN(0)510. The gain coefficient is
chosen asg50.1v, while a0,154.86 mm andd0,15p/2. Other pa-
rameter values are as previously.
S.
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stimulation effect, which is stronger in the center of the tra
The results obtained show that Bose stimulation can oc

to moving condensates as easily as to stationary ones
cases such as this, the amplitude of the center-of-mass o
lation does not change during the condensate growth, w
the total mass of the condensate increases. This means
the condensate center-of-mass kinetic energy,EK

5N(t)m( iv i
2a0,i

2 , can grow exponentially to large value
even in the absence of technical noise. While the pres
model of gain is simplified, similar types of center-of-ma
motion are found in first-principles simulations of conde
sate formation@6#. This suggests that, while BEC’s forme
through stimulated emission may have a low temperat
relative to the center of mass, the center-of-mass motion m
itself have a higher temperature. Current experimental m
surements of single-atom velocity distributions@12# appear
insensitive to the center-of-mass temperature of the cond
sate. The effect is analogous to the increased uncertain
the frequency and pointing stability of a multimode optic
laser, compared to a single-mode laser.

We emphasize that the asymptotic solutions given h
are only applicable for condensate nuclei that have alre
formed, as the spontaneous-emission noise is omitted.
gain medium is assumed to be unsaturated and to equilib
rapidly, giving a uniform gain constant across the growi
condensate. In addition, one can expect damping to oc
due to interactions with noncondensed atoms@13#, which are
not treated here. These interactions, however, can o
equilibrate the temperatures of condensed and nonconde
center-of-mass motion, rather than providing additional co
ing of the condensate center-of-mass motion. Other damp
mechanisms that will intrinsically be present in a BEC a
two-body losses, which effectively changeg to g2GuCu2,
where G is the two-body loss rate. While these affect t
form of the asymptotic solution, two-body~or higher-order!
losses do not change the amplitude of the condensate ce
of-mass oscillation.

In summary, we have found an asymptotic solution to
Gross-Pitaevskii equation with gain, which has the adv
tage of yielding an explicit analytic result of great physic
transparency. The solution shows that the nonequilibrium
havior of a growing Bose-Einstein condensate generally
cludes an outward momentum component and spatial o
lations. As a result, we suggest that the state of a trap
BEC is not a canonical ensemble, and should be charac
ized by at least two distinct temperatures: one for the inter
degrees of freedom and one for the center-of-mass moti
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