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Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate
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We give an asymptotic analytic solution for the generic atom-laser system with gaD-@tiraensional trap,
and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth,
which creates a local-density maximum and a corresponding outward momentum component. In addition, the
solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
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[. INTRODUCTION the simplest rotationally symmetric case, the trap potential is
given by V(x)=mw?|x|?/(2#), wherew is the trap oscilla-
The description of Bose-Einstein condensaf®EC)  tion frequency.
growth [1-4] has become important due to the need to un- Itis helpful to understand the physical implications of Eq.
derstand the physics of atom las¢fd. These recently de- (1) by an analysis of the relevant time scales. In the present
veloped devices that emit coherent wavelike beams of atomsase, there are three different relevant time scales. These are
promise a new generation of precision measurements, applire time scale for the condensate growt} 1/g; the trap
cations in nanotechnology, and novel tests of fundamentadscillation time scalet,=1/w; and the “healing” time
concepts in quantum theory. While it is possible to performscale,t,=1[U|¥(xq,t)|?], associated with the mean-field
first-principles numerical simulations of the relevant equa-interaction potential at the condensate center of mgss
tions [6], a great deal of physical insight can be obtained Since current BEC's typically have a relatively high den-
from an analytic solution. sity, the healing time is usually the smallest, which results in
In this paper, we give an analytic asymptotic solution toa Thomas-FermiTF) type equilibrium condensate. If the
the Gross-Pitaevskii equation describing the early stages afain time scale is long enough, then one may expect that
condensate growth in a trap. The physical insight we obtaiven during growth, the condensate will adiabatically follow
from this is that a growing nonequilibrium condensate has ahe TF solution. This is commonly assumed in analyzing
nonuniform momentum distribution across the condensed reexperimental datdl]. Another possibility is that the gain
gion. As a result, the observed density behaves as though thiene scale is shorter than the trap oscillation period, in which
trap frequency is increased, relative to the usual Thomassase we should no longer expect adiabatic TF-like behavior.
Fermi behaviol 7] of an equilibrium BEC. In addition, our
solutions show center-of-mass oscillations whose kinetic en- A. Asymptotically growing solution
ergy is amplified with the condensate growth. This implies o )
that, while BEC’s formed through evaporative cooling may 10 Show this distinction, we now proceed to give an ana-
have a low temperature for their internal degrees of freedonfytic nonequilibrium solution of the GP equation with gain.
the temperature for the center-of-mass motion is higherF'rSt’ we expand the field in terms of the amplitude and
leading to increased noise in the velocity and direction ofPhase,
atom laser beams.

(xt)=Ax,e I/ U, 2)
Il. GROSS-PITAEVSKII GAIN MODEL and obtain the following coupled equations:
We start by considering a commonly used model of a ETN A A
one-component trapped Bose-Einstein condensate—the E:gA-i- %AV2¢+ EVQS'VA’ (©)
Gross-Pitaevski{GP) equation[8] modified by a linear gain
t 9], of the f
ermg [9], of the form i M2 2 1
— =A%+ —— x|+ | |[Vo|>*— =V2A|. (¥
ot 2h 2m A
IP(x,t) (o, )
———=|g—i|z=V*+V(X)+U|¥|?]||¥. (D
at 2m Next, we wish to investigate possible asymptotic solutions

for long times, i.e., steadily growing solutions, valid some

Here ¥ (x,t) is the mean-field amplitudiso that|¥(x,t)|?  time after initial nucleation of the condensate, yet before any
is the particle number densitym is the atomic mass, arld  gain saturation has occurred. We consider first the rotation-
is the effective interaction potential. In the treatmentDdf ally symmetric case, wher€2=g2+[(D—1)/r]d,, with r
equal to one, two, or three space dimensidhds given by  =|x|. Following the construction successfully used recently
U=4=mhal® P/m, wherea is the scattering length arldis  in optical fiber environmentf10l—and extending these to
the confinement length. The potential te¥(x) is due to an  the current multidimensional case of a trapped BEC—we
optical or magnetic trap, which we assume is harmonic. Irsuppose that the amplitude has a self-similar behavior at
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large time. The phase is assumed to depend on the atomitere Cp is a dimension-dependent constant, wi@y
density at the condensate center, and to have a uniform chigp 2,C,=2, and C;=4. This gives the expected result
giving a radially dependent outward momentum. Thus, wehat the overall atom number grows exponentially with a
seek a solution in the form of gain constant of @g=g(D+2); that is, N(t)
=N(0)exp(t). The reason for this apparent difference in

A=MOT/AD), (5) gain constants is that the relatively slower growth in density
5 - at the center of the condensate is exactly compensated for by
N mg , ©) the increase in condensate radius with time.
297 2h ' The constantr is solved in terms oN(0), sothat
- 2/(D+2)
Here\(t) is a scaling function, while- andg are unknown _ ﬁ bz 2Cp (13
coefficients. Using this construction, we find, from E(®. m UD(D+2)N(0)wP®
and(4),
) This coincides with the healing time for a condensate with
IN(1) rf"y ~ D~ atom numbeN(0), in TF equilibrium, but with an effective
— | f= == =g f—f7gr— 2\ fg, W) e b
ot A 2 trap oscillation frequencw instead ofw.
~ The final result for the particle number density
aN(t) [ 1 , he® , [ D-1 |W(x,t)[>=\2f2/U is
— | =N =\t === —+ "1,
at \gr 2m 2m\ )2 fAr Jt | |2
® W OP= o [ 1- 2], 14
YODP=Tg| 1 2 (14

where we have defined?= w?+g2.
From the first(amplitude equation, the solution requires ~ While this gives an asymptotic solution in terms of the
the twin conditions that initial atom number, the solution needs to be compared with
the usual TF solution to understand the physical implica-
Da - tions. In particular, we can notice an interesting scaling be-
9- > A=0A\. C) havior for the radius, as a function of the trap frequency. In
the present case, the radius scales as

aN(t)

ot

This implies that the scaling functian grows exponentially
with time, having a solution ok (t) =exp(@gt), where we can

immediately solve for the growth rate, since cleady | equilibrium TF solutions, there is a similar behavior,
=29g/(D+2). The physical interpretation of this equation is gxcept that there is no outward momentum term. As a con-
rather straightforward; the growth of the amplitude at aNYsequence, the TF radiuB{e= w2 +2) is always larger at
radial point is reduced below the single-mode growth gte , given total atom number, and the density is lower at the
due to an outward flow of atoms, which transfers part of th§enter, than in these nonequilibrium solutions with gain
mprea_sed d_enS|t_y to a larger radius. This effect increasegresent. The physical reason for this is simply the rapid
with dimensionality of the space. _ Bose-enhanced increase in number dengind hence pres-

The phase equation can now be simplified using the fact,,rg 4t the condensate center during the nucleation process.
that the last two terms involving derivatives have terms inThis effect becomes appreciable whgn o or t,<1/w, S0

g ’

1/x, and hence become exponentially smaller than the earligh ¢ the time scale for condensate growth is faster than the
terms, at long times, as the healing time becomes smalle{rap oscillation period.

This immediately gives the following solution fdr

Rocw*Z/(D“):(w2+§2)*1’(D+2). (15)

\/[1—|X|2/R(t)2]/7' for |X|<R(t), B. Numerical results
f= (10 We now turn to comparisons between the analytic
0 for |x|>R(t), asymptotic solution and exact numerical results. In Fig. 1,

we plot the rms radius(t) of a growing BEC versus The
result found from the above asymptotic solution in three di-
- o mensions is simply given by(t) = 3/7R(t). This is repre-
R(t)=e¥V2h/(m7w?). 1D sented by the dashed line, fgr=10w and N(0)=10. For
comparison, the TF rms radius for the same valuds(¢f is
represented by the dotted line. The full lines correspond to
the results of direct numerical simulations of the GP equation

whereR(t) is the maximum radius given by

The remaining unknown constantis obtained by evalu-
ating the integraN(t) = [| W (x,t)|2d®x for the total number

of particles: with gain, with initial Gaussian wave functions of different
B o \P2oc ~(D+2)R2 widths. The values of other parameters are chosen to corre-
N(t)=e9<D+2>t( — ) 0 . (12 spondto & RbBEC (m=1.44 kgl;=5x10"*" m%s) in
Mw? UD(D+2) a trap withw/27m=100 Hz. As one can see from the graph,
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107 — tained. Following the approach of Kohn's theorghi], gen-
eralized to include gain, we allow for center-of-mass oscil-

lation of the growing condensate, independent of the
interparticle interactions.

Thus, we seek a solution in the form of

A=MO[AX(D/N ()],

A1)2  m|gAx(t)?
S b= do(t) + o h >
196502 04 o6 08 1 12 97

t (ms})

+AX(t)-Xo(t) |,

. whereAx(t)=x—xq(t), Xo(t) is the center of mass, and the
FIG. 1. The rms radius (in a logarithmic scaleof a growing  dot stands for the time derivative.

condensate versus for g=10w. The full lines 1, 2, and 3 corre- Using the same procedure as before, we first find—from

spond, respectively, to initial Gaussian wave functions having rmshe amplitude equation—that the functiaiit) is given by
radii that are twice as larger as, equal to, and twice as small as the

asymptotic rms radiu;(0)=\/3/7R(O). The dashed line is the
asymptotic result, while the dotted line corresponds to the equilib-

rium (TF) solution. whereg=2g/(D +2), as previously.

: I . . To treat the phase equation, in which we neglect the last
despite the initial differences, the mean radii approach th?erm 1\ that becomes exponentially small at long times
same asymptotic value of\3/7R(t), which is different o ccime that ’
from the TF result for the same total number of particles.

The outward momentum densitp=|p| (where p=
—iA[P*(VW¥)—H.c]/2) is plotted in Fig. 2, showing that
in a growing BEC the flow of atoms from the trap centerwhere the function§, andF, are to be found by equating

increases initially with the distance, reaches a maximum, anghe terms in powers akx;. From the terms i\x; , we find
vanishes at =R.

A(t)=exp(gt), (17)

f2: Fl+ Fz(AX)Z,

that each component ofy(t) satisfies the equatiorioyi

+ wiXo;=0, so that the condensate center of mass oscillates

ll. ASYMMETRIC CASE AND CENTER-OF-MASS according to

OSCILLATIONS

The above rotationally symmetric results can easily be Xoi(1) =ao; COY w;t+ 5, ), (18
generallz_ed to_ asymmetric cases, yvhere th? trap OSC'"a_t'o\r/]vhereaOi and &6,; are the initial amplitude and phase.
frequenciesw; in each space direction are different. In this : ;

. i . By equating the terms inAx;)?> and the zeroth-order
case, the trap potential term in Eq4$) and(4) is replaced by term);, rgspecfcilvely, we obtainA(arl1 equation dgy(t),

|3

D
V(x)=5 ;l w?X?. (16)

I~

D
: m )
bot 51 izl [(X0;)2— wX0;]1=0,
Assuming again that the amplitude has a self-similar be-

havior at long times, one can use the previous constructiorfs Well as solutions t6; andF:
In addition, we find that a more general solution can be ob-

F]_: 1/7',

6 | c_ M o (0f+E)Ax(
a J N 277 :
N§ ] \\\ 7 2AN(1) =1 [Ax(t)]2
uf . /' | Combining these together and using the solutions for the
2 center-of-mass coordinates, we finally obtain that the solu-
s, ] tion for the functiongy(t) is given by

o— T s bo(t)=—(M/2A)[Xo(t) - aXo(1)], (19

r {um

_ o while the solution forf is
FIG. 2. The momentum density versus the radial distance

from the center of the trap The full line corresponds to the result- 1 D [%—Xo;(D)]
ing distribution of case 1 in Fig. 1; the dashed line is the corre- f=—|1- A0 ] , (20)
sponding asymptotic solution. \/; i=1 Ri(t)z

2\ 112
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stimulation effect, which is stronger in the center of the trap.
The results obtained show that Bose stimulation can occur
to moving condensates as easily as to stationary ones. In
cases such as this, the amplitude of the center-of-mass oscil-
lation does not change during the condensate growth, while
the total mass of the condensate increases. This means that
the condensate center-of-mass kinetic energiy
=N(t)mE,w?ad;, can grow exponentially to large values,
even in the absence of technical noise. While the present
t (ms) model of gain is simplified, similar types of center-of-mass
motion are found in first-principles simulations of conden-
sate formatior{6]. This suggests that, while BEC’s formed
through stimulated emission may have a low temperature
Yelative to the center of mass, the center-of-mass motion may
itself have a higher temperature. Current experimental mea-
surements of single-atom velocity distributiof?] appear
insensitive to the center-of-mass temperature of the conden-
te. The effect is analogous to the increased uncertainty in
the frequency and pointing stability of a multimode optical
laser, compared to a single-mode laser.
We emphasize that the asymptotic solutions given here
Ri(t)=e§tm, 1) are only applicable for condensa_lte.nuclei_ tha} havg already
formed, as the spontaneous-emission noise is omitted. The
gain medium is assumed to be unsaturated and to equilibrate
rapidly, giving a uniform gain constant across the growing
condensate. In addition, one can expect damping to occur
due to interactions with noncondensed atda®j, which are
. - not treated here. These interactions, however, can only
the same equation as before, EG3), except thatw® is  equilibrate the temperatures of condensed and noncondensed
replaced bijD=le . This again corresponds to the healing center-of-mass motion, rather than providing additional cool-
time in a TF condensate, witN(0) particles and effective ing of the condensate center-of-mass motion. Other damping
trap oscillation frequencies; . mechanisms that will intrinsically be present in a BEC are
The final result for the particle number density is now  two-body losses, which effectively changeto g—T'|¥|?,
_ whereI" is the two-body loss rate. While these affect the
et o X Xpi(1)]? form of the asymptotic solution, two-bodypr higher-order
|‘1’(X.t)|2:m 1= ———= (22)  losses do not change the amplitude of the condensate center-
=1 Ri(t) of-mass oscillation.
An example showing growth of the BEC, while the conden- In summary, we hav_e fOU’?d an _asymp_totic solution to the
sate center of mass oscillates, is shown in Fig. 3. Gross-Pitaevskii equation with gain, which has the advan-
tage of yielding an explicit analytic result of great physical
transparency. The solution shows that the nonequilibrium be-
havior of a growing Bose-Einstein condensate generally in-
The physical interpretation of these results is that thecludes an outward momentum component and spatial oscil-
asymptotic solution with gain has a density distribution thatlations. As a result, we suggest that the state of a trapped
is similar to the TF solution, except that the trap oscillationBEC is not a canonical ensemble, and should be character-
effective frequency is increased, wmeZf: wi2+§2. For ized by atleast two distinct temperatures: one for the internal

a given gain constant, this has the strongest effect for weakiffegrees of freedom and one for the center-of-mass motion.
trapped (low-frequency directions in an asymmetric trap.
The effective frequenci; only modifies the density distri-
bution, since the center of mass still oscillates with the origi-
nal trap oscillation frequencw;. In addition, the solution The authors acknowledge the Australian Research Coun-
gives an outward momentum component due to the bosonicil for the support of this work.

x {(um)

FIG. 3. Growth of a BEC with a center-of-mass oscillation
present. Shown is the condensate denjsityx,t)|2, as found from
the asymptotic solution in a symmetric trap, with a center-of-mas
oscillation in thex direction andN(0)=10. The gain coefficient is
chosen ag=0.1w, while a5 ;=4.86 um andd, ;= w/2. Other pa-
rameter values are as previously.

in the region of space where the expression in large bracke
is positive, andf =0 outside that region.
The maximum radiu®;(t) in each space direction is

where we have introduced?= »?+g2. In addition, the con-
stantr is solved, as previously, in terms df(0) by evalu-
ating the integral for the total number of particléqt)

=N(0)exp(dt). The resulting expression far is given by

IV. SUMMARY
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