110 research outputs found

    Variable Frequency Drives for Irrigation Pumps

    Get PDF
    Many irrigation systems have variable flow and pressure needs. Variable frequency drives (VFDs) are electric controllers that vary the speed of the pump motor, allowing the pump to respond smoothly and efficiently to fluctuations in flow and/or pressure demand (Stover, 2019). They are also sometimes referred to as variable speed drives (VSD). When installed correctly in the right applications, they can effectively reduce energy costs, decrease electrical system stress, and extend the life of a pump.Due to their effectiveness, many energy companies and governments cost-share or incentivize their use.This can sometimes lead to VFDs installed on pumps where costs outweigh benefits.This guide will help irrigators and irrigation dealers understand when and where VFDs make sense

    Absence of juvenile effects confirmed in stable carbon and oxygen isotopes of European larch trees

    Get PDF
    Članek obravnava razmerja ogljikovih in kisikovih izotopov v branikah blizu stržena na prsni viÅ”ini (cca 1,2 m) treh evropskih macesnov (Larix decidua Mill.), rastočih v meÅ”anem gozdu s predraslimi hrasti in nasajenimi evropskimi macesni v zahodnem Walesu, Velika Britanija. Neklimatskega naraŔčajočega trenda v razmerjih ogljikovih izotopov, ki ga je sicer opaziti pri drugih vrstah v letih juvenilne rasti, ni, in tudi razmerje stabilnih izotopov ne kaže pomembnih trendov med odraŔčanjem drevesa. Rezultati iz prvih desetih branik ob strženu se bistveno ne razlikujejo od naslednjih dveh nizov desetih branik. O izostanku juvenilnega efekta v ogljikovih izotopih evropskega macesna so že poročali v zvezi z macesni, rastočimi v nesklenjenih sestojih v Franciji in to pripisali nezastrtosti kroÅ”enj in posledične neuporabe ogljikovega dioksida, ki ga pri dihanju oddajajo drevesa. Analizirana drevesa v zahodnem Walesu so rasla v nasadu s predraslimi hrasti, ki so bili starejÅ”i od podraslih macesnov. Macesni, kot svetloljubne drevesne vrste, so morali tekmovati za prostor in svetlobo, zato domnevamo, da je morebiten pojav juvenilnega efekta pri stabilnih izotopih prej posledica sprememb v hidravlični prevodnosti lesa, kot pa česa drugega. Ker danaÅ”nja praksa izogibanja juvenilnega lesa omejuje potencial stabilnih izotopov drevesnih branik za dendroklimatoloÅ”ke in fizioloÅ”ke raziskave, bi bile potrebnih dodatne raziskave o učinkih juvenilne rasti na pojav juvenilnega efekta v meritvah stabilnih izotopov

    Influence of Thoracic Endovascular Aortic Repair on True Lumen Helical Morphology for Stanford Type B Dissections

    Get PDF
    Objective: Thoracic endovascular aortic repair (TEVAR) can change the morphology of the flow lumen in aortic dissections, which may affect aortic hemodynamics and function. This study characterizes how the helical morphology of the true lumen in type B aortic dissections is altered by TEVAR. Methods: Patients with type B aortic dissection who underwent computed tomography angiography before and after TEVAR were retrospectively reviewed. Images were used to construct three-dimensional stereolithographic surface models of the true lumen and whole aorta using custom software. Stereolithographic models were segmented and co-registered to determine helical morphology of the true lumen with respect to the whole aorta. The true lumen region covered by the endograft was defined based on fiducial markers before and after TEVAR. The helical angle, average helical twist, peak helical twist, and cross-sectional eccentricity, area, and circumference were quantified in this region for pre- and post-TEVAR geometries. Results: Sixteen patients (61.3 \ub1 8.0 years; 12.5% female) were treated successfully for type B dissection (5 acute and 11 chronic) with TEVAR and scans before and after TEVAR were retrospectively obtained (follow-up interval 52 \ub1 91 days). From before to after TEVAR, the true lumen helical angle (ā€“70.0 \ub1 71.1 to ā€“64.9 \ub1 75.4\ub0; P =.782), average helical twist (ā€“4.1 \ub1 4.0 to ā€“3.7 \ub1 3.8\ub0/cm; P =.674), and peak helical twist (ā€“13.2 \ub1 15.2 to ā€“15.4 \ub1 14.2\ub0/cm; P =.629) did not change. However, the true lumen helical radius (1.4 \ub1 0.5 to 1.0 \ub1 0.6 cm; P <.05) and eccentricity (0.9 \ub1 0.1 to 0.7 \ub1 0.1; P <.05) decreased, and the cross-sectional area (3.0 \ub1 1.1 to 5.0 \ub1 2.0 cm2; P <.05) and circumference (7.1 \ub1 1.0 to 8.0 \ub1 1.4 cm; P <.05) increased significantly from before to after TEVAR. The distinct bimodal distribution of chiral and achiral native dissections disappeared after TEVAR, and subgroup analyses showed that the true lumen circumference of acute dissections increased with TEVAR, although it did not for chronic dissections. Conclusions: The unchanged helical angle and average and peak helical twists as a result of TEVAR suggest that the angular positions of the true lumen are constrained and that the endografts were helically conformable in the angular direction. The decrease of helical radius indicated a straightening of the corkscrew shape of the true lumen, and in combination with more circular and expanded lumen cross-sections, TEVAR produced luminal morphology that theoretically allows for lower flow resistance through the endografted portion. The impact of TEVAR on dissection flow lumen morphology and the interaction between endografts and aortic tissue can provide insight for improving device design, implantation technique, and long-term clinical outcomes

    NKG7 enhances CD8+ T cell synapse efficiency to limit inflammation

    Get PDF
    Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses

    Health benefits of supplementing nursery pig diets with microalgae or fish oil

    Get PDF
    Weaning stress can negatively impact a pigā€™s performance; dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFA) reduces inflammatory stress and promotes nursery pigā€™s health and growth. Fish oil (FO) is a major source of n-3 PUFA; however, microalgae (AL) may provide an alternative source of n-3 PUFA. The aim of this study was to assess the health benefits of supplementing a plant protein-based nursery diet with 3.12% AL or 1.25% FO providing equal total n-3 PUFA compared to a control (CON) diet. Seventy-two pigs were fed experimental diets for three weeks (phases 1 and 2), followed by a common standard diet for three weeks (phase 3). Following phase 2, 8 pigs per treatment underwent a lipopolysaccharide (LPS) immune stress challenge to assess the acute-phase response and 8 pigs per treatment were vaccinated with novel antigens to assess acquired immunity. No significant differences in pigletsā€™ growth were observed, despite decreased feed intake in FO piglets compared to AL piglets in phase 3. AL supplementation tended to reduce, and FO supplementation significantly reduced the LPS-induced fever response. The AL pigs had significantly reduced cortisol responses, increased cytokine concentrations, and increased chromogranin A concentrations compared to FO and CON pigs following LPS challenge. Results suggest that AL or FO supplementation in nursery diets differentially modulate the acute-phase response, possibly due to different n-3 PUFA profiles between the two ingredients

    The Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate

    Get PDF
    The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdHāˆ’ mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdHāˆ’ mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide ā€œadded protectionā€ for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    • ā€¦
    corecore