3,513 research outputs found

    Energy-efficient generation of skyrmion phases in Co/Ni/Pt-based multilayers using Joule heating

    Full text link
    We have studied the effects of electrical current pulses on skyrmion formation in a series of Co/Ni/Pt-based multilayers. Transmission X-ray microscopy reveals that by applying electrical current pulses of duration and current density on the order of τ\tau=50 μ\mus and j=1.7x101^10^0 A/m2^2, respectively, in an applied magnetic field of μ\mu0_0Hz=50 mT, stripe-to-skyrmion transformations are attained. The skyrmions remain stable across a wide range of magnetic fields, including zero field. The skyrmions then remain stable across a wide range of magnetic fields, including zero field. We primarily attribute the transformation to current-induced Joule heating on the order of ~125 K. Reducing the magnetic moment and perpendicular anisotropy using thin rare-earth spacers dramatically reduces the pulse duration, current density, and magnetic field necessary to 25 μ\mus, 2.4x109^9 A/m2^2, and 27 mT, respectively. These findings show that energetic inputs allow for the formation of skyrmion phases in a broad class of materials and that material properties can be tuned to yield more energy-efficient access to skyrmion phases.Comment: 32 pages, 7 figures, 9 supplemental figure

    Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms

    Get PDF
    Wheat streak mosaic virus (WSMV) is an eriophyid mite-transmitted virus of the genus Tritimovirus, family Potyviridae. Complete deletion of helper component-proteinase (HC-Pro) has no effect on WSMV virulence or disease synergism, suggesting that a different viral protein suppresses RNA silencing. RNA silencing suppression assays using Nicotiana benthamiana 16C plants expressing GFP were conducted with each WSMV protein; only P1 suppressed RNA silencing. Accumulation of GFP siRNAs was markedly reduced in leaves infiltrated with WSMV P1 at both 3 and 6 days post infiltration relative to WSMV HC-Pro and the empty vector control. On the other hand, helper component-proteinase (HC-Pro) of two species in the mite-transmitted genus Rymovirus, family Potyviridae was demonstrated to be a suppressor of RNA silencing. Symptom enhancement assays were conducted by inoculating Potato virus X (PVX) onto transgenic N. benthamiana. Symptoms produced by PVX were more severe on transgenic plants expressing WSMV P1 or potyvirus HC-Pro compared to transgenic plants expressing GFP or WSMV HC-Pro

    Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

    Get PDF
    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems

    Policing of reproduction by hidden threats in a cooperative mammal

    Get PDF
    The evolution of cooperation in animal and human societies is associated with mechanisms to suppress individual selfishness. In insect societies, queens and workers enforce cooperation by “policing” selfish reproduction by workers. Insect policing typically takes the form of damage limitation after individuals have carried out selfish acts (such as laying eggs). In contrast, human policing is based on the use of threats that deter individuals from acting selfishly in the first place, minimizing the need for damage limitation. Policing by threat could in principle be used to enforce reproductive suppression in animal societies, but testing this idea requires an experimental approach to simulate reproductive transgression and provoke out-of-equilibrium behavior. We carried out an experiment of this kind on a wild population of cooperatively breeding banded mongooses (Mungos mungo) in Uganda. In this species, each group contains multiple female breeders that give birth to a communal litter, usually on the same day. In a 7-y experiment we used contraceptive injections to manipulate the distribution of maternity within groups, triggering hidden threats of infanticide. Our data suggest that older, socially dominant females use the threat of infanticide to deter selfish reproduction by younger females, but that females can escape the threat of infanticide by synchronizing birth to the same day as older females. Our study shows that reproduction in animal societies can be profoundly influenced by threats that remain hidden until they are triggered experimentally. Coercion may thus extend well beyond the systems in which acts of infanticide are common

    Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal

    Get PDF
    Paternity insurance and dominance tenure length are two important components of male reproductive success, particularly in species where reproduction is highly skewed towards a few individuals. Identifying the factors affecting these two components is crucial to better understand the pattern of variation in reproductive success among males. In social species, the social context (i.e. group size and composition) is likely to influence the ability of males to secure dominance and to monopolize reproduction. Most studies have analyzed the factors affecting paternity insurance and dominance tenure separately. We use a long term data set on Alpine marmots to investigate the effect of the number of subordinate males on both paternity insurance and tenure of dominant males. We show that individuals which are unable to monopolize reproduction in their family groups in the presence of many subordinate males are likely to lose dominance the following year. We also report that dominant males lose body mass in the year they lose both paternity and dominance. Our results suggest that controlling many subordinate males is energetically costly for dominant males, and those unable to support this cost lose the control over both reproduction and dominance. A large number of subordinate males in social groups is therefore costly for dominant males in terms of fitness

    Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli

    Get PDF
    The ability of two glycoproteins of human milk, lactoferrin and free secretory component, to bind to Escherichia coli colonization factors (CFAs) was investigated using immunocytochemistry assays of enriched fimbrial extracts. The results revealed that lactoferrin binds to fimbrial CFA I adhesin but not to CFA II adhesin (CS1 and CS3), while free secretory component interacts with both CFA I and CFA II adhesins. Our data indicate that lactoferrin and free secretory component, which are very abundant proteins of human milk, could play an important role against infant enteric disease by blocking bacterial adhesion

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous
    corecore