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ABSTRACT 26 

 27 

In male vertebrates, androgens are inextricably linked to reproduction, social 28 

dominance, and aggression, often at the cost of paternal investment or prosociality. 29 

Testosterone is invoked to explain rank-related reproductive differences, but its role 30 

within a status class, particularly among subordinates, is underappreciated. Recent 31 

evidence, especially for monogamous and cooperatively breeding species, suggests 32 

broader androgenic mediation of adult social interaction. We explored the actions of 33 

androgens in subordinate, male members of a cooperatively breeding species, the 34 

meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone 35 

differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in 36 

the field, by treating subordinate males with the antiandrogen, flutamide. We monitored 37 

androgen concentrations (via baseline serum and time-sequential fecal sampling) and 38 

recorded behavior (via focal observation). Relative to controls, flutamide-treated 39 

animals initiated less and received more high-intensity aggression (biting, threatening, 40 

feeding competition), engaged in more prosocial behavior (social sniffing, grooming, 41 

huddling), and less frequently initiated play or assumed a dominant role during play, 42 

revealing significant androgenic effects across a broad range of social behavior. By 43 

contrast, guarding or vigilance and measures of olfactory and vocal communication 44 

were unaffected by flutamide treatment. Thus, rather than regulating cooperative or 45 

communicative behavior, androgens in adult meerkats are aligned with the traditional 46 

trade-off between promoting reproductive and aggressive behavior at a cost to 47 

affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show 48 

a more pervasive role for androgens in adult social behavior than is traditionally 49 

recognized, with possible relevance for understanding tradeoffs in cooperative systems. 50 
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INTRODUCTION 54 

 55 

Cooperative breeding, by which dominant individuals monopolize a group’s 56 

breeding efforts, is rare among vertebrates, although several theories can be invoked to 57 

explain why subordinate helpers might delay their own reproduction to care for the 58 

offspring of others (Arnold and Owens, 1998; Lukas and Clutton-Brock, 2012). The 59 

mechanisms involved in ensuring differential reproduction can differ rather dramatically 60 

across species: In some, helpers are hormonally suppressed, such that they are 61 

physiologically unable to reproduce (Arnold and Dittami, 1997; Bales et al., 2006; 62 

Schoech et al., 1991), whereas in others, helpers are behavioraly suppressed, but retain 63 

the physiological capacity to reproduce (Bennett et al., 1993; Creel et al., 1992; Khan et 64 

al., 2001; Oliveira et al., 2003). Among the latter, the role of reproductive hormones, 65 

such as testosterone (T), which might not vary substantially between breeders and 66 

helpers, remains poorly understood. Within social species, reproductive hormones often 67 

regulate (or are regulated by) the within-group interactions that are necessary to 68 

maintain stable relationships (Albers et al., 2002; Monaghan and Glickman, 1992). In 69 

males, androgen function is best understood in the context of mediating reproductive 70 

and aggressive behavior – activities that often come at the cost of paternal investment 71 

(Hegner and Wingfield, 1987; Ketterson and Nolan, 1994). Androgen function is also 72 

invoked to explain rank-related differences in courtship and competition (Wingfield et 73 

al., 1987). Nevertheless, there is recent evidence to suggest an even broader role for T in 74 

mediating adult social interaction, particularly in monogamous or cooperatively 75 

breeding species (Eisenegger et al., 2011; Gleason and Marler, 2010; Storey et al., 76 

2006; van der Meij et al., 2012; Wang and De Vries, 1993). Here, using a wild 77 
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population of the cooperatively breeding meerkat (Suricata suricatta), we investigated 78 

these issues by blocking the androgen-receptor system of adult, subordinate males. 79 

Meerkats are social mongooses that live in relatively stable clans or structured 80 

groups, typically comprising a dominant breeding pair and various subordinate relatives 81 

or offspring of both sexes that contribute to pup rearing (Clutton-Brock et al., 2001). 82 

Among males, breeders and helpers express similar concentrations of T and luteinizing 83 

hormone (LH), and show comparable LH spikes in response to a GnRH challenge 84 

(Carlson et al., 2004; O'Riain et al., 2000). Thus, although the dominant male 85 

monopolizes most of a group’s breeding (Griffin et al., 2003), subordinate males are not 86 

reproductively suppressed (Carlson et al., 2004) and may gain some breeding success, 87 

as well as experience raised T concentrations, during extraterritorial prospecting forays 88 

(Spong et al., 2008; Young et al., 2005, 2007). T does not correlate with aggression or 89 

dominance between male social ranks (Carlson et al., 2004) and there is no evidence 90 

that T relates to rates of pup provisioning (Carlson et al., 2006a). Yet, because 91 

behavioral endocrinologists tend to focus on understanding dominance or the 92 

differences between social ranks, little is known about the role of T in regulating 93 

subordinate male interaction in this or other species (although see: Virgin and Sapolsky, 94 

1997). Given that dominant and subordinate animals may respond differently to the 95 

same T treatment (Fuxjager et al., 2015) or that T-associated variation in behavioral 96 

‘style’ may exist within the same class (Virgin and Sapolsky, 1997), it is increasingly 97 

relevant to understand how the different social classes respond to endocrine challenges.   98 

Meerkats are an appropriate model in which to test the proposition that androgens 99 

may regulate social behavior beyond aggression: Firstly, subordinates are far more 100 

numerous than are dominant animals and necessarily account for a large proportion of 101 

social interaction; secondly, these ‘helper’ males rarely reproduce, but curiously 102 
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maintain androgen concentrations commensurate with those of dominant males; thirdly, 103 

access to an exceptional wild population allows us to consider social and ecological 104 

relevance, while overcoming logistical challenges that typically preclude field 105 

neuroendocrine studies (see Fusani et al., 2005).  106 

With relatively few exceptions, typically involving avian species (e.g., Hegner and 107 

Wingfield, 1987; Schwabl and Kriner, 1991), hormones or their actions are rarely 108 

experimentally manipulated in the field (see Fusani et al., 2005), particularly to explore 109 

their relationship to the broad social repertoire. Instead, androgen-manipulation studies 110 

in laboratory animals, particularly rodents and birds, aim to improve our mechanistic 111 

understanding of isolated traits (either e.g., reproduction: Södersten et al., 1975; 112 

aggression: Searcy and Wingfield, 1980; play: Meaney et al., 1983; scent marking: 113 

Fuxjager et al., 2015; or song: Grisham et al., 2007). This historical focus can occur at 114 

the expense of gaining comparative, ecological, and evolutionary understanding of 115 

hormone action: detecting tradeoffs and constraints, for instance, requires an integrated 116 

approach (Wingfield et al., 2009).  117 

To test the role of androgens in subordinate, male meerkats, we administered the 118 

nonsteroidal antiandrogen, flutamide, that competitively blocks the binding of 119 

androgenic hormones (primarily T) to androgen receptors (Hellman et al., 1977; Peets et 120 

al., 1974). Androgens often relate to the initiation of aggression (e.g. Virgin and 121 

Sapolsky, 1997) or the outcome of aggressive encounters (e.g. Rose et al., 1972), and 122 

androgen-mediated cues can also influence susceptiblity to aggressive attacks 123 

(Monaghan and Glickman, 1992). Consistent with studies in various species showing 124 

that flutamide administration leads to reduced adult aggression (Sperry et al., 2010; 125 

Taylor et al., 1984; Vleck and Dobrott, 1993), we expected flutamide-treated meerkats 126 

to initiate less, but receive more, aggression than their control counterparts.  127 
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Beyond the relationship to overt aggression, androgens also may be linked to other 128 

more subtly competitive or even prosocial interaction in animals. Rough-and-tumble 129 

play, for instance, which can facilitate the establishment of dominance relations among 130 

the males of certain species (Panksepp, 1981; Pellegrini, 1995), is often sexually 131 

differentiated, with males playing more vigorously than females (Boulton, 1996; Goy 132 

and Phoenix, 1971; Meaney et al., 1985). The expression of mammalian social play is 133 

masculinized through early androgen exposure (Goy and Phoenix, 1971; Olioff and 134 

Stewart, 1978; Wallen, 2005) and can be feminized through reduced prenatal exposure 135 

to androgens (Meaney and Stewart, 1981; Meaney et al., 1983). Typically, postnatal 136 

androgens do not mediate social play (Meaney et al., 1985), as neither the frequency nor 137 

vigor of play are influenced by administration of T to juvenile females (Joslyn, 1973) or 138 

by castration of juvenile males (Beatty et al., 1981; Goy, 1970; Pedersen et al., 1990). 139 

Nevertheless, few researchers have addressed the potential link between activational 140 

androgens and adult social play, largely because playful behavior tends to decrease 141 

dramatically in adulthood. Meerkats, however, continue to play as adults (Sharpe, 142 

2005), so we might expect flutamide-treated meerkats to play less vigorously than those 143 

experiencing normal androgen action.  144 

With regard to the role of androgens in more purely prosocial, affiliative, or even 145 

cooperative behavior, the nature of the correlations can vary considerably. Paternal care 146 

(including huddling and grooming), for instance, is generally thought to be inhibited by 147 

T (Hegner and Wingfield, 1987; Ketterson et al., 1992), but can increase with androgens 148 

in the males of various species (Desjardins et al., 2008; Gleason and Marler, 2010; Neff 149 

and Knapp, 2009; Rodgers et al., 2006; Storey et al., 2000; Trainor and Marler, 2001; 150 

Wang and De Vries, 1993). Moreover, depending on prenatal androgen exposure 151 

(Millet and Dewitte, 2006; van Honk et al., 2012), T in men can increase affiliative 152 
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behavior (van der Meij et al., 2012), reduce deceit (Wibral et al., 2012), promote 153 

reciprocity (Boksem et al., 2013) and increase cooperation (Huoviala and Rantala, 154 

2013). Meerkats show a range of prosocial behavior (including grooming, social 155 

sniffing, and huddling) and cooperative behavior (including babysitting and 156 

provisioning pups, as well as vigilance and guarding against predators: Clutton-Brock et 157 

al., 1999, 2000, 2001). If androgens in meerkats implicate the traditional tradeoff 158 

between aggression and affiliation, we might expect rates of prosocial interaction to 159 

increase with flutamide treatment. If androgens in meerkats function to increase 160 

cooperation, to the benefit of the entire group, we might expect flutamide treatment to 161 

reduce pup care or antipredator activities. 162 

Lastly, androgens also may be involved in aspects of olfactory and vocal 163 

communication (Dryden and Conaway, 1967; Ulibarri and Yahr, 1988; Wingfield et al., 164 

1987). In this regard, scent marking is often linked to territorial defense (Hediger, 1949; 165 

Johnson, 1973) and reproductive advertisement (Brown and Macdonald, 1985; Drea, 166 

2015; Eisenberg and Kleiman, 1972) with dominant individuals generally marking more 167 

than subordinates (Johnson, 1973; Ralls, 1971) . Scent marking increases following 168 

early exposure to androgens and decreases if such exposure is inhibited (Epple, 1981; 169 

Turner, 1975; Ulibarri and Yahr, 1988). Postnatal T similarly mediates the frequency of 170 

scent marking (Johnston, 1981) and can also influence the chemical composition of 171 

odorants (Novotny et al., 1984). Castration causes retardation or atrophy of scent 172 

glands, with accompanying effects on odorant production (Dryden and Conaway, 1967; 173 

Epple, 1981), whereas hormone replacement restores these attributes (Dryden and 174 

Conaway, 1967). Within adult male meerkats, there is no strong evidence of rank-175 

related differences in scent marking at latrines (Jordan, 2007), although we suspect that 176 

they might emerge in other contexts. Despite equivalence in circulating T between male 177 
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ranks, anal gland secretions appear to be more pronounced in dominant males than in 178 

subordinate males (see Figure 1 in Leclaire et al., 2014) and preliminary analyses of 179 

these secretions reveal rank-related differences in chemical composition (Drea, 180 

unpublished data). Moreover, the bacterial communities associated with anal pouch 181 

secretions vary with social status (Leclaire et al., 2014). Overall, therefore, we expect 182 

that androgens might regulate certain aspects of olfactory communication in adult 183 

meerkats, such that flutamide treatment would reduce rates of scent marking.  184 

Vocalizations likewise function in territorial defense (Bates, 1970; Peek, 1972; 185 

Hall, 2009; Shonfield et al., 2012) and reproductive advertisement (Robertson, 1986; 186 

Waas, 1988). Vocal cues are often studied in relation to T, providing evidence that the 187 

frequency or structure of vocal signals correlate with androgens (Barelli et al., 2013; 188 

Charlton et al., 2011; Evans et al., 2008; Solı́s and Penna, 1997; Wingfield et al., 1987). 189 

Manipulation of T prenatally, neonatally or in adulthood shows that vocalizations are 190 

regulated by androgens. Early androgen exposure masculinizes calls (Holman et al., 191 

1995; Tomaszycki et al., 2001, 2005), whereas prenatal exposure to antiandrogens 192 

feminizes calls (Tomaszycki et al., 2001). In adulthood, increased T concentrations have 193 

been linked to increased call rate, duration or quality (Ball et al., 2003; Charlton et al., 194 

2011; Cynx et al., 2005; Gyger et al., 1998; Ketterson et al., 1992). Conversely, 195 

castration has been shown to negatively influence call rate or signal structure (Pasch et 196 

al., 2011). As shown with androgen-receptor blockade in other species (Behrends et al., 197 

2010), we expect flutamide treatment in meerkats to influence vocalization, potentially 198 

reducing calling rate, decreasing call duration or raising call pitch. 199 

 200 

METHODS 201 

 202 
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Field site, study population, and research cohorts 203 

 204 

Our subjects were members of a well-studied and habituated population of 205 

meerkats, comprising 15-20 groups that inhabit the Kuruman River Reserve and 206 

surrounding farms in the Kalahari region of South Africa (26°58’S, 21°49’E). 207 

Information about the climate, landscape, and vegetation for this region have been 208 

provided elsewhere (Clutton-Brock et al., 1998; Russell et al., 2002). All habituated 209 

members of the population are microchipped and easily identifiable from unique dye 210 

marks applied to their fur and routinely renewed without the need for capture (Clutton-211 

Brock et al., 2008). Minimally one animal per group (typically, the dominant female) is 212 

fitted with a radio collar (Sirtrack, Havelock North, New Zealand) to facilitate locating 213 

the group when necessary. 214 

Our main subjects, deriving from five different groups, were 24 subordinate 215 

males, 12 of which received flutamide treatment and 12 of which served as controls (see 216 

research design, below). These animals were aged 11-18 months at the start of 217 

treatment. Because meerkats of both sexes typically reach adulthood at 1 year of age 218 

(Clutton-Brock et al., 2008), but can reproduce successfully at younger ages (Young et 219 

al., 2006), we considered our subjects to be sexually mature.  220 

Starting in 2011, we studied these animals in two cohorts. Cohort 1 included nine 221 

animals (5 flutamide, 4 controls) followed from February to March 2011, at the end of 222 

the breeding season. Cohort 1 served in a pilot study to establish our endocrine, 223 

behavioral, and surgical procedures, including treatment dosage (see Electronic 224 

Supplementary Material, ESM, §a) and to supply preliminary data (Fig. S1). Cohort 2 225 

included 15 animals (7 flutamide, 8 controls; ESM, §b and Table S1) followed from 226 

December 2011 to January 2012, at the beginning of the following breeding season, and 227 
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served in the experimental study described in detail herein. These latter subjects were 228 

closely age-matched (mean age ± standard error: 1.04 ± 0.04 years) and derived from 3 229 

large groups totalling 96 animals (KungFu: n = 36; Lazuli: n = 30; Whiskers: n = 30). 230 

 231 

Research design 232 

 233 

We tested each focal subject of cohort 2 over a four-week period (with a one-week 234 

maximum offset between subjects). Each subject's first week served to provide baseline 235 

endocrine values and was followed by a capture day, to administer treatment, and 236 

another day of post-capture monitoring. We randomly assigned these animals to one of 237 

three treatment conditions, including flutamide (n = 7), placebo (n = 4), and no 238 

treatment or 'no-pellet' (n = 4), with the constraint that littermates be assigned to 239 

different treatments and that flutamide-treated animals be evenly distributed between 240 

the three groups (see ESM, §b and Table S1). Treatment was followed by another three 241 

weeks of data collection to evaluate endocrine and behavioral effects (see below). One 242 

of the flutamide-treated individuals was struck by a vehicle (along with two other non-243 

intervention animals) and died early in the study. This animal contributed to baseline 244 

fecal and serum values only, reducing our sample for examining the behavioral effects 245 

of flutamide to n = 6 (2 per group). 246 

All protocols were approved by Duke University’s Institutional Animal Care and 247 

Use Committee (Protocol Registry Numbers A171-09-06 and A143-12-05) and the 248 

University of Pretoria’s Animal Use and Care Committee (Ethical Approval Number 249 

#C074-11, to CMD). The Northern Cape Conservation Authority in South Africa 250 

provided permission for the project.  251 

 252 
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Sampling, capture, and treatment administration 253 

 254 

We visited our focal groups 3-5 days per week, during both a morning (0600-1100 255 

h) and evening (1600-2000 h) session. We obtained ad lib fecal samples prior to 256 

treatment (to establish baseline) and across the 3-week treatment period. Whenever a 257 

subject was observed defecating, we collected the fresh sample into a plastic bag and 258 

placed it immediately on ice (in a cooler box or thermos). We stored all of the fecal 259 

samples at -20 °C within 4 hours of collection.  260 

We performed all of the captures over the course of five consecutive days in mid 261 

December, with 1-2 capture mornings (0600-0800 h) per group. We processed 262 

maximally four subjects, in succession, per day. Shortly after emergence from their den 263 

or ‘sleeping burrow,’ we captured our subjects by gently picking them up by the base of 264 

the tail, placing them into a cloth bag, and anesthetizing them with isoflurane (Isofor; 265 

Safe Line Pharmaceuticals, Johannesburg, South Africa), administered in oxygen via 266 

face mask. We first obtained a blood sample (~ 2 mL) from the jugular vein of each 267 

individual, using a 25 G needle and 2-mL syringe. We immediately transferred blood 268 

samples to serum separator tubes (BD Vacutainer; BD Franklin Lakes, NJ, USA) and 269 

allowed them to clot at ambient temperature. Following a morning’s captures, we 270 

centrifuged the blood samples at 3000 rpm for 10 min and pipetted the serum layer into 271 

a clean Eppendorf tube. We stored serum samples on site at -20 °C until transport, on 272 

ice, along with all fecal samples (see above), to Duke University in Durham, North 273 

Carolina, where we stored samples at -80 °C until further processing or analysis.  274 

The animals that received flutamide, at roughly 15 mg/kg/day (Table S1), or 275 

placebo underwent a minor surgical procedure performed by JD, a veterinarian licensed 276 

in South Africa. Using sterile procedures, we implanted one 21-day release pellet (either 277 
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150 mg flutamide (treatment) or carrier only (placebo), Innovative Research of 278 

America, Sarasota, FL) subcutaneously between the subject’s shoulder blades. Briefly, a 279 

dorsal skin incision of 1-2 cm was made using a scalpel, a small subcutaneous pocket 280 

was created using blunt dissection, and the pellet was inserted using forceps. Incisions 281 

were sutured using dissolvable material (Vicryl). These subjects also received a 282 

subcutaneous injection of a non-steroidal, anti-inflammatory painkiller (0.2-0.3mg/kg 283 

meloxicam: Metacam, Boehringer) at the time of capture. The animals that served as 284 

no-pellet controls underwent captures and blood sampling only. After recovery from 285 

anesthetic, all of the subjects were immediately returned to their groups (20-30 min 286 

postcapture) and closely monitored throughout that and the following day. One male 287 

developed a minor infection at the implant site, for which he received a 3-day course of 288 

antibiotics (5-10 mg/kg enrofloxacin: Baytril, Bayer), injected subcutaneously, by 289 

gently lifting the skin, once per day. Animals in this population are sufficiently well-290 

habituated that injections can be administered to conscious animals, typically while they 291 

are foraging. We suspended data collection from this animal during his period of 292 

medication.  293 

 294 

Behavioral data collection 295 

 296 

We began data collection two days following surgery. We conducted focal 297 

observations (Altmann, 1974) of our subjects roughly 3 days per week (average = 3.1 ± 298 

0.35 days) across the 3-week treatment period. Morning sessions began as soon as about 299 

half of the group had emerged from the sleeping burrow. Because most prosocial 300 

interaction occurs while meerkats are clustered and sedentary, including during the brief 301 

periods spent at the burrow, we conducted a series of short (~ 5 min) ‘burrow focals’ (in 302 
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random order) to ensure that we obtained some data from all focal subjects in a given 303 

group before the meerkats began to forage and disperse. Thereafter, we conducted 304 

longer, 30-min ‘foraging focals’ (rotating through our subjects in random order) until 305 

the group settled into its mid-day siesta. After a break of several hours, we used 306 

radiotelemetry to relocate the group, which had typically recommenced foraging. 307 

Evening sessions thus began with foraging focals and ended with burrow focals that 308 

were terminated once about half of the group had entered its sleeping burrow. Using this 309 

regimen, we collected 524 focals, representing over 130 hours of behavioral data.  310 

We collected behavioral data in real time using the CyberTracker software 311 

package (version 3.263, CyberTracker Conservation) on handheld palm pilots (Palm 312 

T|X, Palm, Inc.). We established our data recording protocol (see ESM, §a) and 313 

ethogram (Table 1) for use both during burrow and foraging focals. For all social 314 

interaction, we included the partners and the directionality of behavior. We paused 315 

observation whenever the focal subject was out of view (e.g. if it entered a ‘bolt hole’ 316 

following a predator alarm call) and resumed observation once the focal subject was 317 

back in sight. We recorded the frequency and, in some cases, duration of behavior, 318 

which fell into the following seven categories: (1) aggression, (2) submission, (3) play 319 

(Fig. 1), (4) other prosociality, (5) vigilance, (6) olfactory communication and (7) vocal 320 

communication (see Table 1). Because occurrences of submission were so rare, we 321 

dropped this category from our analyses. Also, owing to a drought-induced shortage of 322 

pups at the time of our study, there were no opportunities to observe babysitting or pup 323 

provisioning; therefore, the only cooperative behavior included in our study were 324 

various forms of vigilance. For details about the vocal analyses, see below. In assessing 325 

intra- and inter-observer reliability for the remaining five behavioral categories, we 326 

obtained indices of concordance that were minimally 87.0% (see ESM, §c).  327 



 15 

- Insert Table 1 and Fig 1 - 328 

 329 

Vocal recordings and sound analysis 330 

 331 

We assessed any potential treatment effects on vocalizations by examining the rate 332 

and acoustic structure of meerkat close calls, which are thought to be important in the 333 

maintenance of group cohesion (Manser, 1998). We conducted 5-15 min sound focals 334 

on each individual every third day during the treatment period, resulting in 5-7 335 

recording sessions per male (12 hours of sound recordings in total). We recorded close 336 

calls during the mornings, after groups had left the sleeping burrow and the focal males 337 

had started foraging. We recorded individuals from a distance of 0.5-1.0 m with a 338 

directional Sennheiser microphone (ME66 with a K6 power module and a MZW66 pro 339 

windscreen, Old Lyme, CO, U.S.A) connected to a Marantz Professional PMD661 340 

solid-state recorder (16bit, 44.1kHz, Marantz Japan Inc.).  341 

We assessed the calls for quality using Cool Edit 2000 (Syntlillium Software 342 

Corporation, Phoenix, AZ, USA), selected for analyses 16-68 calls per individual, and 343 

carried out quantitative acoustic analyses in Praat v.5.3.84 (www.Praat.org). From each 344 

call, we selected four acoustic parameters, including the number of pulses, call duration 345 

(s), average pulse duration (s), and mean fundamental frequency (F0, Hz), as these have 346 

been shown to be affected by androgen concentrations in other species (Bass and 347 

Remage-Healey, 2008; Fusani et al., 1994; Pasch et al., 2011; Rek et al., 2011). We 348 

based final analyses on 554 calls for all acoustic parameters, except average pulse 349 

duration, which was based on 324 calls because the duration of all pulses in the calls 350 

could not always be realiably calculated.    351 

 352 

http://www.praat.org/
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Enzyme immunoassays 353 

 354 

To prepare fecal samples for analysis, we lyophilized, pulverized, and sifted fecal 355 

samples into a fine powder within six months of collection, and stored the powder in 356 

vials at -80 °C until extraction. We extracted steroid metabolites from fecal samples 357 

following a protocol described elsewhere (Starling et al., 2010; Wasser et al., 2000).  358 

Briefly, we weighed 0.2 g of dry fecal powder and mixed it with 2 mL of 90% 359 

methanol. We placed the mixture on a rotating shaker for 30 min and centrifuged it 360 

twice, discarding the sediment each time. We stored the methanol-extracts at -80 °C 361 

until analysis.  362 

We analysed serum and fecal extracts for circulating T and androgen metabolites 363 

(hereafter fecal T or fT), respectively, via enzyme immunoassay (EIA). We used an 364 

anti-T antibody raised in mice (Fitzgerald Industries International) that cross reacts 365 

100% with T, 9% with dihydrotestosterone, < 1% with androstenediol, and < 0.1% with 366 

androstenedione, estriol, estradiol, and progesterone. We paired this antibody with a 367 

matched T 3-CMO-HRP conjugate (Fitzgerald Industries International). Plate 368 

sensitivity was 0.2-12.5 ng/mL. Our EIA protocol is detailed in the ESM (§d). 369 

To assess intra-assay reliability we assayed low, medium, and high controls in 10 370 

wells on each of two plates. The average coefficient of variation (CV) between the two 371 

plates was 9.8% (low control), 7.7% (medium control), and 5.7% (high control). Inter-372 

plate reliability was assessed by assaying low, medium, and high controls in duplicate 373 

on each of 10 plates. The average interplate CV was 5.5% (low control), 6.4% (medium 374 

control), and 6.8% (high control). Serial dilutions of serum and fecal extracts pooled 375 

from multiple individuals produced linear displacement curves that were parallel to the 376 

T standard curve. We also combined serum and fecal pools with low, medium, and high 377 
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concentrations of T prior to analysis. Recovery percentages for serum spikes were 378 

90.2% (low control), 108.1% (medium control), 95.4% (high control), and for fecal 379 

spikes were 93.6% (low control), 110.5% (medium control), and 104.3% (high control). 380 

To assess our extraction efficiency for fecal samples, dried feces from multiple subjects 381 

were pooled and spiked with T prior to extraction. Extraction efficiency was 85.4%. 382 

 383 

Physiological validation 384 

 385 

One means of biological validation of fecal hormone metabolites is to show that 386 

the metabolites reveal a physiologically relevant difference across groups, detectable 387 

from varying circulating hormone concentrations (Brown et al., 2005). We performed a 388 

biological validation of fT in wild meerkats and obtained the expected age-related 389 

change in fT characteristic of male puberty (Beehner and Whitten, 2004) (see ESM, §e 390 

and Fig. S2). Another means of validation, particularly for showing a cause-and-effect 391 

relationship, is to administer a drug known to stimulate hormonal production. In this 392 

case, our administration of flutamide might also serve as a biological validation of our 393 

assay, because in sufficient doses, flutamide is known to impair the negative feedback 394 

loop, somewhat paradoxically raising T concentrations (Hellman et al., 1977). 395 

Accordingly, flutamide-treated animals might reveal an initial increase in fT relative to 396 

control animals. 397 

 398 

Statistical analyses 399 

 400 

We conducted our statistical analyses using R, version 2.15.2 (R Core Team, 401 

2012), and SPSS 22.0. We set significance at P < 0.05. After log transformation, our 402 
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endocrine data, which derived both from fecal and serum samples, were normally 403 

distributed. To determine if serum T concentrations between our experimental 404 

conditions (flutamide, placebo, no-pellet) differed prior to treatment, we ran a single 405 

ANOVA using the aov function in R. Once we determined that the placebo and no-406 

pellet conditions did not differ (see results), we combined these two conditions and ran 407 

a single student’s t-test to compare serum concentrations of all control subjects against 408 

those of flutamide-treated individuals. 409 

We tested the influence of flutamide treatment on fecal T metabolites by 410 

implementing a series of generalized linear mixed models (GLMMs) using the 411 

glmmADMB package, version 0.7.4 (Skaug et al., 2013) in R, using Gaussian 412 

distributions. The log of fT (ng/g) was entered as the response variable in each model. 413 

The fixed effects in the full model were treatment (three levels: flutamide, placebo or 414 

no-pellet), treatment period (two levels: pre-treatment or treatment), and time of 415 

deposition (two levels: AM or PM). We included the individual nested within its social 416 

group as a random effect. Following Crawley (2002), we included all probable 417 

independent terms and interactions in the full model and excluded terms sequentially 418 

until the model contained only statistically significant terms. 419 

If fT concentrations did not differ significantly between the placebo and no-pellet 420 

treatments, we pooled these two conditions in a single ‘control’ treatment and reran 421 

models with only two levels for the treatment factor (flutamide and control). Because 422 

treatment period (i.e. pre-treatment or treatment) influenced fT concentration, we 423 

subsequently re-ran the model within the two treatment periods. Moreover, as the 424 

response to flutamide treatment may have been different across weeks, we ran a model 425 

within each week of treatment. For all of the models, we included all probable 426 
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independent terms and interactions in the full model and excluded terms sequentially 427 

until the model contained only statistically significant terms (Crawley, 2002).  428 

For the behavioral data, we also used the glmmADMB package, version 0.7.4 429 

(Skaug et al., 2013) to implement GLMMs with zero-inflation. Each behavioral 430 

category was entered as the response variable. The fixed effects in the full model were 431 

treatment (three levels: flutamide, placebo or no-pellet), days on treatment (continuous 432 

variable), location (two levels: burrow or forage), time of day (two levels: AM or PM), 433 

and group size (continuous variable). Individual and group identities were entered as a 434 

nested random effect in the models. The duration of each observation was accounted for 435 

as an offset in the model. If a behavior did not significantly differ between the placebo 436 

and no-pellet conditions, we pooled these two treatments in a single control treatment 437 

and reran the model with only two levels for the treatment factor (flutamide and 438 

control). As in our endocrine analyses, we included all probable independent terms and 439 

interactions in the full model and excluded terms sequentially until the model contained 440 

only statistically significant terms. For each model we used the Poisson and negative 441 

binomial distributions and selected the model with the lowest AIC value. 442 

We analysed call rates and vocal parameters using linear mixed effects models 443 

(procedure lmer from package lme4 in R, version 1.1-7), except for number of pulses, 444 

which we analysed using general linear mixed effects models with specified poisson 445 

distribution (glmer procedure, nlme package version 3.1-118). We calculated call rates 446 

for each recording session. We used treatment (three levels: flutamide, placebo or no-447 

pellet) as a between-subjects factor and individual identity in all models to account for 448 

multiple observations per invidiual. Call rates and average pulse duration were natural-449 

log transformed to conform with linearity assumptions. Call rate analyses are based on 450 

100 sound recordings.  451 
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 452 

RESULTS 453 

 454 

Baseline androgen patterns  455 

 456 

During the baseline week of fecal endocrine monitoring, prior to treatment 457 

administration, subordinate male meerkats that were to receive placebo, no pellet, or 458 

flutamide did not differ in their fT concentrations (ANOVA: F2,11 = 0.65, P = 0.53). 459 

These pre-treatment placebo and no-pellet conditions did not differ from each other (t-460 

test: t10.903 = 0.29, P = 0.78), nor did males in the single collapsed, control group differ 461 

in their baseline fT values from males that were assigned to the flutamide condition (t-462 

test: t11.161 = 1.10, P = 0.29). Likewise, serum T concentrations from blood samples 463 

collected at the time of capture (representing a more immediate pre-treatment baseline) 464 

did not vary by the three eventual experimental conditions (ANOVA: F2,11 = 0.62, P = 465 

0.55). There were also no differences in circulating T when the males assigned to the 466 

two comparable control conditions (t-test: t4.25 = 0.54, P = 0.62) were collapsed and 467 

compared against the males assigned to the flutamide condition (t-test: t11.87 = -1.01, P = 468 

0.33). Thus, there were no baseline differences in the androgen profiles of our subjects. 469 

 470 

Effect of flutamide on fecal androgens 471 

  472 

During treatment, no-pellet and placebo males also did not differ in their fT 473 

concentrations, either across all weeks of treatment (z value = -0.52, P = 0.60) or when 474 

considering the first (z value = -1.14, P = 0.25) and second (z value = -0.4, P = 0.69) 475 

weeks separately. We had too few fecal samples from these males in week three to 476 
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compare these two conditions in the last week. Given the lack of differences, we 477 

collapsed the two control categories in subsequent analyses. 478 

Despite the absence of an overall difference in fT concentrations between 479 

flutamide and control males across the entire 3-week treatment period (z value = 1.12, P 480 

= 0.26), there was a clear time course in the effect of antiandrogen treatment on fT (Fig. 481 

2). Notably, in the first week of treatment, flutamide-treated males showed the expected 482 

effect of this form of antiandrogen treatment and had significantly greater fT 483 

concentrations than did control males (z value = 3.71, P < 0.001; Fig. 2). Thereafter, 484 

this difference disappeared: Flutamide and control males no longer differed in fT in 485 

either the second (z value = -0.8, P = 0.42) or third (z value = 0.39, P = 0.70) weeks of 486 

treatment. 487 

- Insert Fig 2 - 488 

 489 

Behavioral equivalence between placebo and no-pellet conditions 490 

 491 

Consistent with their equivalent androgen values (and intact androgen function), 492 

males in the no-pellet and placebo conditions did not differ in any of their behavioral 493 

patterns. This equivalence was true for week 1 only (see ESM, §f and Table S2), 494 

confirming that, after a 48-hour recovery period, the minor surgery for pellet implants 495 

had no effects on behavior. Moreover, the same pattern of behavioral equivalence 496 

maintained across all weeks of the study, as evidenced, for instance, by initiating (z 497 

value = -0.02, P = 0.98) and receiving (z value = -1.62, P = 0.11) high-intensity 498 

aggression (HIA; see Table 1) or initiating (z value = -1.64, P = 0.10) and receiving (z 499 

value = -0.09, P = 0.93) prosocial interaction (see ESM, §f and Fig. S3). Therefore, we 500 
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collapsed the two control categories in subsequent behavioral comparisons against 501 

flutamide-treated males. 502 

  503 

Effects of flutamide on behavior and vocal parameters 504 

 505 

As expected, compared to all control males, flutamide-treated males initiated 506 

significantly less (z value = -2.93, P = 0.003; Fig. 3a) and received significantly more (z 507 

value = 2.10, P = 0.036; Fig. 3a) HIA (Table 2). The most frequent aggressive behavior 508 

within the HIA category was food competition, which we examined independently. 509 

Compared to all control males, flutamide-treated males initiated significantly fewer 510 

foraging competitions (z value = -2.91, P = 0.004). The rates of receiving foraging 511 

competition, however, were not affected by treatment (z value = 1.07, P = 0.29). 512 

Flutamide treatment also altered certain aspects of social play. Compared to all 513 

control males, flutamide-treated subjects were significantly less likely to initiate play 514 

using the play-face invitation (z value = -4.32, P < 0.0001; Fig. 1a and Table 2). As 515 

anticipated, flutamide treatment also decreased the expression of ‘dominant’ types of 516 

play, such as pinning during wrestling (Fig. 1b). Whereas control and flutamide males 517 

were equally likely to play in a ‘subordinate’ (e.g. pinned) position (z value = -0.97, P = 518 

0.33), flutamide-treated males played significantly less in the dominant position than 519 

did control males (z value = -2.09, P = 0.036; Fig. 3b).  520 

Compared to all control males, flutamide-treated males also initiated significantly 521 

more prosocial behavior at the burrow after foraging (z value = 1.99, P = 0.046; Table 2 522 

and Fig. 3c). We could detect no effect of receiving other prosocial interaction relative 523 

to an individual’s treatment (z value = 1.4, P = 0.16). Interestingly, when considering 524 

the identity of the focal subjects’ partners in all of these aggressive, playful, and 525 
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prosocial interactions, the vast majority (82.3%) occurred with non-focal group 526 

members (see ESM, §f and Table S3). The minimal involvement of the dominant male 527 

and other flutamide-treated subjects suggests, respectively, that the effects of treatment 528 

were unlikely to have been biased by the dominant, male breeder in each group or 529 

confounded by having flutamide-treated animals as both the actor and recipient in given 530 

interactions. 531 

Unlike the patterns we observed for direct social interaction, flutamide males did 532 

not differ from control males in their more solitary expression of vigilance (z value = 533 

0.23, P = 0.82) or scent-marking (z value = -0.27, P = 0.79) behavior (Table 2, although 534 

see Fig. S1b). Also contrary to expectations, call rate was not affected by treatment 535 

(LMM: all t < 0.19, all P ≥ 0.8). Instead, individual identity explained a large proportion 536 

of the variation in all models, revealing high individual variability in all of the measured 537 

acoustic parameters of close calls (see ESM, §g and Table S4).  538 

- Insert Fig 3 and Table 2 - 539 

 540 

Time course of behavioral treatment effects 541 

 542 

The number of days that subjects spent on treatment explained little to none of 543 

the overall variance in our GLMM models. Owing to limited sample sizes, non-normal 544 

distribution, and zero-inflation, we lacked the statistical power to further test for time-545 

course effects in our data. Nevertheless, for comparison with the endocrine effects (Fig. 546 

2), similar graphical representation of various types of behavior across weeks of 547 

treatment shows consistency in the relationship between flutamide-treated and control 548 

animals and, if anything, that treatment effects became stronger (rather than weaker) 549 

with time (Fig. 4).  550 
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 551 

- Insert Fig 4 - 552 

 553 

DISCUSSION 554 

 555 

In this first-ever, experimental manipulation of androgen action in wild meerkats, 556 

we found that androgens were involved in regulating a range of social behavior among 557 

subordinate, male helpers. Specifically, based on the effects of the antiandrogen, 558 

flutamide, we deduce that androgens facilitate various forms of aggressive and 559 

dominance interaction, influence aspects of social play, and dampen prosociality or 560 

affiliative behavior. By contrast, androgens have potentially no effect on cooperative 561 

antipredator behavior, scent marking or various parameters of close-call vocalizations. 562 

Given that T concentrations do not differ between the social classes of adult male 563 

meerkats (Carlson et al., 2004), androgens may not fully explain the social stratification 564 

and behavioral roles of breeders and helpers; nevertheless, based on present results, 565 

circulating androgens clearly play an important part in the daily, social lives of 566 

subordinate males, perhaps maintaining their reproductive potential and roaming 567 

proclivities to overcome the limited, unpredictable, and fleeting nature of their breeding 568 

opportunities. 569 

We found no inherent bias in circulating or fecal androgen concentrations between 570 

our control and treated subjects, but we observed a significant, short-term (i.e., week-571 

long) rise in fT concentrations as a result of blocking a subordinate male’s androgen 572 

receptors with flutamide. This seemingly paradoxical result is consistent with effects of 573 

flutamide treatment observed in other studies (e.g. Stone and Clejan, 1991) and likely 574 

owes to a decrease in androgen negative feedback causing a compensatory increase in 575 
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androgen production (Södersten et al., 1975). Beyond indicating that our early flutamide 576 

treatment was successful and that we had achieved an effective dosage, this result 577 

represents a second physiological validation of our assay of fecal androgen metabolites 578 

(the first being detection of pubertal endocrine changes). Nevertheless, there is great 579 

variation across studies in the impact of flutamide on circulating androgen 580 

concentrations: In some cases, significant behavioral impacts of flutamide treatment 581 

occur without any increase in T (Searcy and Wingfield, 1980) or occur even with a 582 

decrease in T (Hegner and Wingfield, 1987); in other cases, increases in T remain in 583 

effect long-term and until cessation of treatment (Stone and Clejan, 1991) or, as in our 584 

study, over only a short time span (e.g. from day 5 to 7 of a week-long treatment, 585 

despite daily injections: Södersten et al., 1975; see also Fusani, 2008). This range of 586 

physiological responses to flutamide treatment across studies could owe to the varying 587 

dosages achieved, the mode of administration used, the social context or the species 588 

tested. 589 

The possibility exists that the decrease in fT we observed after week 1 might have 590 

indicated that, rather than lasting the full 21-day period, the pellets were exhasted after 591 

only one week. This interpretation is contradicted by the persistent behavioral effects of 592 

treatment across weeks, suggesting instead that androgen-receptor blockade remained in 593 

effect, but that feedback mechanisms may have stabilized, effectively ‘resetting 594 

homeostasis’, or that initial receptor blockade had lasting behavioral consequences, 595 

perhaps via altered receptor sensitivity (Fusani, 2008). Although we cannot distinguish 596 

between these alternative mechanistic explanations, it is clear that behavioral effects of 597 

antiandrogen treatment persisted minimally throughout the three-week study period.   598 

These behavioral effects of flutamide administration, as expected, were manifest 599 

in meerkat aggressive behavior, with treated males initiating less, but receiving more, 600 
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aggression than controls. The reduced initiation of aggression by treated males provides 601 

strong evidence for a direct effect of androgens on agonism. That treated males also 602 

received more aggression from conspecifics implicates additional indirect effects of 603 

androgens on behavior. Perhaps group members perceived a difference or ‘weakness’ in 604 

flutamide-treated males, which may have prompted an increase in the frequency with 605 

which treated subordinates were targeted. Alternately, the stability of social relations 606 

among subordinate males may be partially maintained by balanced interactions, such 607 

that a mismatch in the aggressive performance between flutamide-treated males and 608 

controls may have led to an escalation in the aggression against treated animals. 609 

We also found that androgen-receptor blockade mediated certain aspects of social 610 

play in adult meerkats. Notably, flutamide-treated males initiated less play and were 611 

less dominant in their expression of social play than were control males. Thus, in the 612 

absence of androgenic influence, male meerkats were less bold, assertive, or 613 

competitive in their play. Although the directionality in these patterns is not unexpected, 614 

these findings provide rare evidence of activational effects of androgens on adult social 615 

play. Across mammalian taxa, prenatal, neonatal or prepubertal androgens have been 616 

shown to influence rough-and-tumble play, specifically, during infancy or juvenility 617 

(Meaney et al., 1985; Panksepp, 1981; Pedersen et al., 1990; Pellegrini, 1995). Those 618 

studies established that organizational, rather than activiational, T is important for 619 

modulating social play (Meaney et al., 1985) – a generalization that is called into 620 

question by our present findings.  621 

Flutamide administration also affected other prosocial interaction, although in the 622 

opposite, enhancing direction. Flutamide-treated males were more likely to initiate 623 

affiliative behavior, such as grooming, huddling, and social sniffing. Combined with the 624 

depressive effects of flutamide on the initiation of aggressive or dominance behavior, 625 
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these results are consistent with the hypothesis that there is an androgen-mediated trade-626 

off between aggression and affiliation (Albers et al., 2002; Hegner and Wingfield, 1987; 627 

Ketterson and Nolan, 1994). Nonetheless, it must be noted that in some monogamous or 628 

cooperatively breeding mammals, T (either directly or following conversion to 629 

estrogen) can promote, rather than inhibit, paternal or affiliative care (Storey et al., 630 

2006; Trainor and Marler, 2001, 2002). We might therefore have expected androgen-631 

receptor blockade to influence various facets of meerkat cooperation, but based on 632 

vigilance behavior only, we found no such evidence. These results are in accord with a 633 

previous study that found no relation between another form of cooperation – pup 634 

provisioning – and T in subordinate males (Carlson et al., 2006a). As indicated by the 635 

relation between prolactin and babysitting (Carlson et al., 2006b), other neuroendocrine 636 

circuits may be involved in promoting pup care.  637 

Conservatively, we might interpret that androgen function does not play a pivotal 638 

role in regulating cooperative behavior in adult meerkats; however, it is important to 639 

note that we lack information about any role androgens may play in prenatally priming 640 

meerkats for their adult behavioral repertoire. In humans, for instance, there is evidence 641 

to suggest that T’s action in promoting prosociality or cooperation may stem from 642 

prenatal androgen exposure. Specifically, experimentally increasing circulating T in 643 

humans leads to an increase in cooperative behavior, but only in those individuals who 644 

had low prenatal exposure to androgens (van Honk et al., 2012).   645 

Antiandrogen treatment also did not appear to influence scent-marking behavior, 646 

including anal marking, body rubbing, chewing, and chinning vegetation. Nonetheless, 647 

although expressed evenly among the treatment groups, scent marking occurred in only 648 

22 focal observations (4.2%). It may be that these null results reflect a floor effect of 649 

low scent-marking frequencies by subordinate males, rather than any lack of androgenic 650 
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involvement in olfactory behavior or odorant quality. Although Jordan (2007) reports 651 

no rank-related difference in male marking patterns at latrines, we suspect that the 652 

marking behavior of male meerkats may be strongly rank related in other contexts (see 653 

Leclaire et al., 2014).  654 

Although androgens have been shown to affect vocalizations in various species, 655 

including humans (e.g. Gyger et al., 1988, Charlton et al., 2011; Baker, 1999, Damrose, 656 

2009), we did not detect any significant effects of flutamide treatment on meerkat close 657 

calls. These null results, albeit consistent with the findings of some antiandrogen studies 658 

in avian species (Grisham et al., 2007; Schwabl and Kriner, 1991), may owe, in part, to 659 

the significant individual variability we observed: This variability confirms previous 660 

findings of individual-specific close calls in meerkats (Townsend et al., 2010), but it 661 

may have overridden any potential treatment effects. Alternately, it may be that close 662 

calls produced during foraging are particularly insensitive to the actions of androgens. 663 

Indeed, previous findings of significant androgenic or antiandrogenic effects on 664 

vocalizations have involved calls produced in the contexts of reproductive 665 

advertisement and antipredator behavior (Ball et al., 2003, Behrends et al., 2010, 666 

Charlton et al., 2011, Gyger et al., 1988). In the future, it may be worth exploring if 667 

meerkat vocalizations produced in more directed social interaction relate to circulating 668 

androgen concentrations.  669 

In summary, we found that androgen receptor blockade had important effects in 670 

wild, subordinate male meerkats beyond modulating aggression: antiandrogens affected 671 

a broad range of social interaction, from competitive to affiliative behavior. Continued 672 

studies of equally ranked individuals are thus likely to reveal new insights into the 673 

hormonal regulation of behavioral interaction. Whereas androgens are increasingly 674 

recognized for their role in mediating social behavior, estrogens have received 675 
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considerably less attention, particularly in males. Because androgens can be readily 676 

converted to estrogens, depending on local enzyme activity, addressing the role of 677 

estrogens in monogamous and cooperatively breeding species will be an important next 678 

step. In future studies, researchers should also examine the role of prenatal androgens in 679 

establishing receptor distribution that might help explain how differential activational 680 

responses may arise from animals showing roughly equivalent endocrine profiles. That 681 

influencing the action of activational androgens could have such wide-ranging effects 682 

within members of the same social class leads us to expect even more dramatic 683 

influences of organizational androgens. It is noteworthy that all of the effects we 684 

observed became evident in a relatively short time span. With longer-term endocrine 685 

manipulation, even greater effects may be revealed. In sum, experimental endocrine 686 

manipulation in the field, albeit challenging, is key to revealing the mechanisms 687 

supporting social relationships, within and between classes.   688 
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Table 1 1046 

Ethogram for codifying meerkat (Suricata suricatta) behavior. The definitions for 1047 

behavior, grouped by category (i.e., aggression, submission, play, prosociality, 1048 

vigilance, olfactory, and vocal) and subcategory (e.g. high- vs. low-intensity 1049 

aggression), are adopted primarily from meerkat studies, but also from studies of other 1050 

carnivores.  1051 

 1052 
Behavior by 

category 

Definition References 

Aggression 

Bitea Grabbing, with one’s teeth, any part of another 

individual’s body, ranging from quick 

forceful nips to prolonged or intense contact.  

Clutton-Brock et 

al., 2006 

Chin ruba Touching or wiping another with one’s chin, 

often accompanied by head shaking. 

Kutsakake and 

Clutton-Brock, 

2008 

Food 

competitiona 

Approaching another’s food item or hole, 

prompting a defensive response via 

growling, blocking approach, pushing, 

threatening, and biting. 

Ewer, 1963; 

Madden et al., 2009 

Hip slama Using one’s hindquarters to push intensely 

against the side of another individual. 

Clutton-Brock et 

al., 2006 

Pusha Slamming one’s hindquarters against another’s 

in an interaction that can be resolved 

immediately or can persist for a measurable 

duration. 

Madden et al., 2009 

Threata Lunging at another individual, often 

accompanied by growling. 

Drea et al., 1996 

Block 

approach 

Shifting one’s body to prevent another’s access 

to a resource. 

Ewer, 1963; 

Madden et al., 2009 

Chatterb Breathy, repetitive clucking vocalization. Ewer, 1963  

   

Growlb Emitting a low, rumbling vocalization. Clutton-Brock et 

al., 2006 

 

Submission 

Grovel Adopting a crouched body posture, often while 

peeping. 

Clutton-Brock et 

al., 2006 

Peepb High-pitched vocalization, often occurring in 

rapid repetition. 

Clutton-Brock et 

al., 2006 

Play 

Play bitec Short nips that are not forceful; commonly 

expressed during wrestling and grappling, 

but only scored when independent of 

Ewer, 1963; 

Wemmer and 

Fleming, 1974 
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wrestling or grappling.  

Play bite 

shakec 

Non-harmful, open-mouth contact of another 

individual’s body using a slow, side-to-side 

motion of one’s head. 

Drea et al., 1996 

Play chasec Pursuit with a bouncy gate. Ewer, 1963; 

Wemmer and 

Fleming, 1974 

Play mountc Clasping another individual’s ribcage or groin 

while participants are a ventro-dorsal 

position. 

Wemmer and 

Fleming, 1974 

Stand onc Simultaneously placing both forelimbs on the 

torso of an individual that is either sitting or 

prone. 

Wemmer and 

Fleming, 1974 

Wrestle-top or 

wrestle-

bottomc 

Vigorous, mutual rolling around or pushing, 

often coupled with play biting, shaking, 

pawing, and clasping. 

Wemmer and 

Fleming, 1974 

Play face Type of play initiation involving an 

exaggerated open mouth, often shown while 

in a prone body position with the tail 

pointing upward. 

Drea et al., 1996 

 

Other prosociality 

Groom Moving the mouth/teeth through another’s fur; 

recorded as a dyadic interaction for each pair 

of individuals; considered as a new bout 

after switching to a new partner or after 1 

min of inactivity. 

Ewer, 1963; 

Madden et al., 2009 

Social sniff Olfactory investigation of another individual.  Drea et al., 2002 

Sniff genitals Olfactory investigation of individual's genital 

region. 

Drea et al., 2002 

Huddle  Body contact with another individual; recorded 

as one event regardless of how many 

individuals are involved. 

Madden et al., 2009 

 

Vigilance 

Guardd Standing on the ground, on hind legs, while 

scanning the environment.  

Clutton-Brock et 

al., 1999 

Raised guardd Standing on a raised (>10 cm) perch, on hind 

legs, while scanning the environment. 

Clutton-Brock et 

al., 1999 

Other vigilance Quick scans of the environment from a 

quadrupedal position. 

English, 2009 

 

Olfactory 

Anal mark 

environment 

Everting the anal pouch and rubbing it across a 

vertical or horizontal substrate. 

Ewer, 1963; Moran 

and Sorensen, 1986 

Chin rub 

environment 

Wiping of the face or cheek region across a 

substrate. 

Moran and 

Sorensen, 1986 

Chew marking Biting vegetation, usually accompanied by 

rapid head shaking. 

Jordan, 2007 
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Vocal 

Contact or 

close call  

Short pulsated vocalization made during 

foraging, but not during a direct social 

encounter. 

Townsend et al., 

2010 

 1053 

a  Included in the collapsed subcategory of high-intensity aggression. 1054 

b Vocalization that is clearly associated with aggressive/dominance or submissive 1055 

interaction, but that we did not record acoustically. 1056 

c Included in determining ‘dominant’ vs. ‘subordinate’ role assumed during play. 1057 

d Indicates behavior recorded as a state (all other behavior recorded as an event). 1058 

  1059 
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Table 2 1060 

Effect of flutamide treatment on the behavior of subordinate male meerkats. A 95% 1061 

confidence interval (CI) excluding 0 indicates a statistically significant relationship. The 1062 

P values and CI that indicate statistical significance are shown in bold. 1063 

Dependent variable Treatment 

coefficient1 

P value 95% CI 

Initiate aggression (all types) -0.15 0.37 (-0.47) − 0.17 

Receive aggression (all types) 0.21 0.17 (-0.09) − 0.51 

Initiate high-intensity aggression -0.75 0.003 (-1.26) − (-0.25) 

Receive high-intensity aggression 0.43 0.036 0.03 − 0.83 

Initiate food competition -1.05 0.004 (-1.75) − (-0.34) 

Receive food competition 0.40 0.29 (-0.34) − 1.14 

Play face -4.32 <0.0001 (-2.65) − (-1.00) 

Dominant play -1.18 0.036 (-2.28) − (-0.08) 

Subordinate play -0.50 0.33 (-1.51) − 0.51 

Initiate prosocial behavior2 0.47 0.046 0.01 − 0.92 

Receive prosocial behavior2 0.28 0.16 (-0.16) − 0.95 

Vigilance  0.03 0.82 (-0.20) − 0.25 

Scent marking -0.20 0.79 (-1.67) − 1.27 

 1064 

1Positive or negative values indicate that the behavior values were higher or lower in 1065 

response to the flutamide treatment than to the control treatment (including both the 1066 

no-pellet and placebo conditions), respectively.  1067 

2Indicates prosocial behavior that occurred around the burrow system after foraging.   1068 



Figure 1: Adult, subordinate male meerkats playing. (A) The individual in the top-left corner is 

inviting play by showing a ‘play face’. (B) Two individuals involved in play wrestling can either 

occupy a dominant position (shown by the standing animal) or a subordinate position (shown by the 

pinned animal). 

 

  



Figure 2: Fecal testosterone in adult, subordinate male meerkats across the three-week treatment 

period. ***, P < 0.001. 

 

 

 

Figure 3: Effect of flutamide treatment on the frequency (per focal) of behavior in subordinate male 

meerkats: (A) Initiating and receiving high-intensity aggression, (B) playing in the dominant position, 

and (C) initiating prosocial behavior after foraging around the burrow. *, P < 0.05; **, P < 0.01. 

 

 

  



Figure 4: Behavior of adult, subordinate male meerkats across the three-week treatment period: (A) 

Initiating high-intensity aggression, (B) initiating foraging competition (during foraging focals), (C) 

rough-and-tumble play, and (D) initiating prosocial behavior. 

 


