168 research outputs found

    Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas

    Get PDF
    Self-organized spatial structures in the light emission from the ion-ion capacitive RF plasma of a strongly electronegative gas (CF4) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio-frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations

    Constraining the equation of state with heavy quarks in the quasi-particle model of QCD matter

    Full text link
    In a quasi-particle model of QCD matter at finite temperature with thermal masses for quarks and gluons from hard thermal loops, the equation of state (EOS) can be described by an effective temperature dependence of the strong coupling g(T)g(T). Assuming the same effective coupling between the exchanged gluon and thermal partons, the EOS can also be related to parton energy loss.} Based on the quasi-particle linear Boltzmann transport (QLBT) model coupled to a (3+1)-dimensional viscous hydrodynamic model of the quark-gluon plasma (QGP) evolution and a hybrid fragmentation-coalescence model for heavy quark hadronization, we perform a Bayesian analysis of the experimental data on DD meson suppression RAAR_{\rm AA} and anisotropy v2v_2 at RHIC and the LHC. We achieve a simultaneous constraint on the QGP EOS and the heavy quark transport coefficient, both consistent with the lattice QCD results.Comment: 8 pages, 5 figure

    Striations in electronegative capacitively coupled radio-frequency plasmas: analysis of the pattern formation and the effect of the driving frequency

    Get PDF
    Self-organized striated structures of the plasma emission have recently been observed in capacitive radio-frequency CF4 plasmas by Phase Resolved Optical Emission Spectroscopy (PROES) and their formation was analyzed and understood by Particle in Cell / Monte Carlo Collision (PIC/MCC) simulations [Y.-X. Liu, et al. Phys. Rev. Lett. 116, 255002 (2016)]. The striations were found to result from the periodic generation of double layers due to the modulation of the densities of positive and negative ions responding to the externally applied RF potential. In this work, an in-depth analysis of the formation of striations is given, as well as the effect of the driving frequency on the plasma parameters, such as the spatially modulated charged species densities, the electric field, and the electron power absorption is studied by PROES measurements, PIC/MCC simulations, and an ion-ion plasma model. The measured spatio-temporal electronic excitation patterns at different driving frequencies show a high degree of consistency with the simulation results. The striation gap (i.e., the distance between two ion density maxima) is found to be inversely proportional to the driving frequency. In the presence of striations the minimum(CF_3^+, F^-) ion densities in the bulk region exhibit an approximately quadratic increase with the driving frequency. For these densities, the eigenfrequency of the ion-ion plasma is near the driving frequency, indicating that a resonance occurs between the positive and negative ions and the oscillating electric field inside the plasma bulk. The maximum ion densities in the plasma bulk are found not to exhibit a simple dependence on the driving frequency, since these ion densities are abnormally enhanced within a certain frequency range due to the ions being focused into the "striations" by the spatially modulated electric field inside the bulk region.Comment: 31 pages, 16 figure

    Striations in electronegative capacitively coupled radio-frequency plasmas: effects of the pressure, voltage, and electrode gap

    Get PDF
    Capacitively coupled radio-frequency (CCRF) CF_4 plasmas have been found to exhibit a self-organized striated structure at operating conditions, where the plasma is strongly electronegative and the ion-ion plasma in the bulk region (largely composed of CF_3^+ and F^- ions) resonates with the excitation frequency. In this work we explore the effects of the gas pressure, the RF voltage, and the electrode gap on this striated structure by Phase Resolved Optical Emission Spectroscopy and Particle-In-Cell/Monte Carlo Collisions simulations. The measured electronic excitation patterns at different external parameters show a good general agreement with the spatio-temporal plots of the ionization rate obtained from the simulations. For a fixed driving frequency the minima of the CF_3^+ and F^- ion densities (between the density peaks in the bulk) are comparable and independent of other external parameters. However, the ion density maxima generally increase as a function of the pressure or RF voltage, leading to the enhanced spatial modulation of plasma parameters. The striation gap (defined as the distance between two ion density peaks) is approximately inversely proportional to the pressure, while it exhibits a weak dependence on the RF voltage and the electrode gap. A transition between the striated and non-striated modes can be observed by changing either the pressure or the RF voltage; for 13.56 MHz and 18 MHz driving frequencies we present a phase diagram as a function of the pressure and voltage amplitude parameters.Comment: 32 pages, 18 figures. arXiv admin note: text overlap with arXiv:1703.0588

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    Panchromatic Sequentially Cast Ternary Polymer Solar Cells

    Get PDF
    In this report, a high-performance all-polymer organic photodetector that is sensitive to linearly polarized light throughout the visible spectrum is demonstrated. The active layer is a bulk heterojunction composed of an electron donor polymer PBnDT-FTAZ and acceptor polymer P(NDI2OD-T2) that have complementary spectral absorption resulting in efficient detection from 350 to 800 nm. The blend film exhibits good ductility with the ability to accommodate large strains of over 60% without fracture. This allows the film to undergo large uniaxial strain resulting in in-plane alignment of both polymers making the film optically anisotropic and intrinsically polarization sensitive. The films are characterized by UV–vis spectroscopy and grazing incidence wide-angle X-ray scattering showing that both polymers have similar in-plane backbone alignment and maintain packing order after being strained. The films are integrated into devices and characterized under linear polarized light. The strain-oriented detectors have maximum photocurrent anisotropies of 1.4 under transverse polarized light while maintaining peak responsivities of 0.21 A W −1 and a 3 dB cutoff frequency of ≈1 kHz. The demonstrated performance is comparable to the current state of the art all-polymer photodetectors with the added capability of polarization sensitivity enabling new application opportunities

    Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    Get PDF
    BACKGROUND: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore