20 research outputs found

    Bee Pollen: Current Status and Therapeutic Potential.

    Get PDF
    Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry

    Mortality of emergency abdominal surgery in high-, middle- and low-income countries

    Get PDF
    Background: Surgical mortality data are collected routinely in high-income countries, yet virtually no low- or middle-income countries have outcome surveillance in place. The aim was prospectively to collect worldwide mortality data following emergency abdominal surgery, comparing findings across countries with a low, middle or high Human Development Index (HDI). Methods: This was a prospective, multicentre, cohort study. Self-selected hospitals performing emergency surgery submitted prespecified data for consecutive patients from at least one 2-week interval during July to December 2014. Postoperative mortality was analysed by hierarchical multivariable logistic regression. Results: Data were obtained for 10 745 patients from 357 centres in 58 countries; 6538 were from high-, 2889 from middle- and 1318 from low-HDI settings. The overall mortality rate was 1⋅6 per cent at 24 h (high 1⋅1 per cent, middle 1⋅9 per cent, low 3⋅4 per cent; P < 0⋅001), increasing to 5⋅4 per cent by 30 days (high 4⋅5 per cent, middle 6⋅0 per cent, low 8⋅6 per cent; P < 0⋅001). Of the 578 patients who died, 404 (69⋅9 per cent) did so between 24 h and 30 days following surgery (high 74⋅2 per cent, middle 68⋅8 per cent, low 60⋅5 per cent). After adjustment, 30-day mortality remained higher in middle-income (odds ratio (OR) 2⋅78, 95 per cent c.i. 1⋅84 to 4⋅20) and low-income (OR 2⋅97, 1⋅84 to 4⋅81) countries. Surgical safety checklist use was less frequent in low- and middle-income countries, but when used was associated with reduced mortality at 30 days. Conclusion: Mortality is three times higher in low- compared with high-HDI countries even when adjusted for prognostic factors. Patient safety factors may have an important role. Registration number: NCT02179112 (http://www.clinicaltrials.gov)

    Application of air ionizer to remove electrostatic discharge (esd) dust for plastics material in automotive painting process

    No full text
    In the painting production process, repairing of painted defects by running the part through repeat process, together with the essential requirement of quality control routines, contribute for a very large proportion for the operating costs. The dust and fibre defects which ranged between 40% and 50% found to be the highest rejection in of the local painting line manufacturer. Both defect not only affected the visual appearance but also the of the parts performance. The objective of this research is to explore the effectiveness of the air ionizer device to reduce the electrostatic value of the painted material that attract the foreign particle to fall into painted surface. By doing so, the rejection contributes by dust and fibre particle in the automotive painting can be reduce. The ionizer is an effective application to replace the conventional methods which applied the air blow process to remove dust and fibre particle before painting process. The experiment has been conducted by measuring the electrostatic value of the raw material before and after the ionizer treatment. The correlation between the static value and the production pass rate also has been examined. The result shows 0.34% reduction of the fibre particle after the implementation of the ionizer device

    Evaluation of air flow pattern for conceptual design of automotive painting line using computational fluid dynamic (cfd) for better dust particle reduction

    Get PDF
    In the painting production process, repairing of paint work defects by running the part through repeat process, together with the essential requirement quality control routines, account for a very large proportion of the operating costs .The dust and fibre defects is ranged between 40% and 50% and found to be the highest rejection from one of the local industry painting line. Hence that, this research is focused to study the effectiveness of simulating this painting line using Computational Fluid Dynamic (CFD) method to identify the air flow and turbulence pattern which may help to understand the particle concentration and movement in the painting line. Six mechanical designs of ventilation system was proposed in order to study the particle movement and concentration to this automotive painting line. From here, the best design which suite the objective of minimizing the particle concentration and its dissipation into the painted part are justified. Hence, improvement action such as layout arrangement and mechanical design are factors involved to overcome and minimize the foreign particle from fall down into the parts during the painting process. The result from this study may also be a benchmarking for future design of new automotive painting line

    Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence

    No full text
    Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, sho1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, sho1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach

    Analysis of air flow around the painting line for dust reduction: an experimental and numerical study

    Get PDF
    The repair of paint work defects in the painting production process is done by running the parts through the painting process again. It is done together with the requisite quality control routines and involves a very large proportion of the operating costs. The dust defect which ranges between 40% to 50% is found to be the top and highest rejection at the painting line. Hence, this paper is focused to identify the effectiveness of applying Computational Fluid Dynamic (CFD) to identify the air flow and the turbulence pattern to investigate the movement and the dust particle concentration in painting line. Renormalization Group (RNG) k-ε turbulence model is used in CFD to predict the particles’ movement and concentration. Five new models including the current painting line design are proposed and tested. The painting line model labelled as Model F is found to be the best model to minimize and reduce the dust particle concentration inside the painting line environment with 96.01% of percentage particle is flushed out at air velocity of 0.1 m/s. Along with results from numerical simulation using CFD, the experimental data is also collected using an air flow meter in a small-scale model painting line. Both data from experiment and CFD simulation are analysed and compared in order to measure the effectiveness of the result. The average relative error for Model F is recorded at 4.76%. The results from this study is recommended to be considered as one of the benchmarks for future design of automotive painting line

    Identification of Novel Bioactive Compound Derived from Rheum officinalis against Campylobacter jejuni NCTC11168

    No full text
    Gastric diseases are increasing with the infection of Campylobacter jejuni. Late stages of infection lead to peptic ulcer and gastric carcinoma. C. jejuni infects people within different stages of their life, especially childhood, causing severe diarrhea; it infects around two-thirds of the world population. Due to bacterial resistance against standard antibiotic, a new strategy is needed to impede Campylobacter infections. Plants provide highly varied structures with antimicrobial use which are unlikely to be synthesized in laboratories. A special feature of higher plants is their ability to produce a great number of organic chemicals of high structural diversity, the so-called secondary metabolites. Twenty plants were screened to detect their antibacterial activities. Screening results showed that Rheum officinalis was the most efficient against C. jejuni. Fractionation pattern was obtained by column chromatography, while the purity test was done by thin-layer chromatography (TLC). The chemical composition of bioactive compound was characterized using GC-MS, nuclear magnetic resonance, and infrared analysis. Minimal inhibitory concentration (MIC) of the purified compound was 31.25 µg/ml. Cytotoxicity assay on Vero cells was evaluated to be 497 µg/ml. Furthermore, the purified bioactive compound activated human lymphocytes in vitro. The data presented here show that Rheum officinalis could potentially be used in modern applications aimed at the treatment or prevention of foodborne diseases
    corecore