82 research outputs found

    Biometric Identity Verification Using Intra-Body Propagation Signal

    Get PDF
    We propose to utilize an electromagnetic wave through a human body as biometrics. The electromagnetic wave (intrabody propagation signal) is generated at a relatively shallow depth in the human body through a pair of electrodes pasted on the human skin. The biological tissue of each individual human being is different from that of others, so that the transfer characteristic of the intra-body propagation signal is also different mutually. By using such a difference, it is expected to authenticate personal identification. In addition, liveness detection can be realized simultaneously using the intra-body propagation signal. It is effective on the detection of spoofing using artificial bodies. In this paper, we examine the individual feature in the intra-body propagation signal based on the spectrum analysis. As a result, the verification rate of 58% is obtained using the similarity of the power spectrum especially in the 30-60 MHz sub-band

    Myocardial Protective Effect of Tezosentan, an Endothelin Receptor Antagonist, for Ischemia-Reperfusion Injury in Experimental Heart Failure Models

    Get PDF
    The myocardial protective effects of endothelin antagonist in ischemic cardiomyopathy (ICMP), doxorubicin-induced cardiomyopathy (DOX) and pressure-overload hypertrophy by transverse aortic constriction (TAC) models have been predicted to be different. The objective of this experiment, therefore, is to evaluate the myocardial protective effect of tezosentan, an endothelin receptor antagonist, in various experimental heart failure models. Sprague-Dawley rats (6-8 weeks old, 200-300 g) were randomized to three experimental groups (n=30 each): ICMP; DOX; and TAC group. Each of these groups was randomly assigned further to the following subgroups (n=10 each): sham-operated ischemia-reperfusion subgroup (SHAM); tezosentan treated ischemia-reperfusion subgroup (Tezo); and tezosentan non-treated ischemia-reperfusion subgroup (N-Tezo). Total circulatory arrest was induced for 1 hr, followed by 2 hr of reperfusion. The left ventricular developed pressure, peak positive and negative first derivatives, and coronary blood flow were significantly different (P<0.05) among the SHAM, Tezo, and N-Tezo subgroups of the ICMP group at 30 min of reperfusion, but there were no statistically significant differences among the subgroups of the DOX and TAC groups. In conclusion, tezosentan, an endothelin receptor antagonist, showed myocardial protection effects only on the ischemic cardiomyopathy rat model, but not in the non-ischemic heart failure rat models

    Let-7 MicroRNA Family Is Selectively Secreted into the Extracellular Environment via Exosomes in a Metastatic Gastric Cancer Cell Line

    Get PDF
    Background: Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene downregulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well. Methodology/Principal Findings: Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity. Conclusions/Significance: The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosome

    Placenta-specific novel splice variants of Rho GDP dissociation inhibitor β are highly expressed in cancerous cells

    No full text
    Abstract Background Alternative splicing of pre-mRNA transcripts not only plays a role in normal molecular processes but is also associated with cancer development. While normal transcripts are ubiquitously expressed in normal tissues, splice variants created through abnormal alternative splicing events are often expressed in cancer cells. Although the Rho GDP dissociation inhibitor β (ARHGDIB) gene has been found to be ubiquitously expressed in normal tissues and involved in cancer development, the presence of splice variants of ARHGDIB has not yet been investigated. Results Validation analysis for the presence of and exon structures of splice variants of ARHGDIB, performed using reverse-transcriptase polymerase chain reaction and DNA sequencing, successfully identified novel splice variants of ARHGDIB, that is, 6a, 6b, and 6c, in colon, pancreas, stomach, and breast cancer cell lines. Quantitative real-time polymerase chain reaction analysis showed that these variants were also highly expressed in normal placental tissue but not in other types of normal tissue. Conclusions Expression of ARHGDIB variants 6a, 6b, and 6c appears to be restricted to cancer cells and normal placental tissue, suggesting that these variants possess cancer-specific functions and, as such, are potential cancer-related biomarkers.</p
    corecore