2,765 research outputs found

    Current-controlled nanomagnetic writing for reconfigurable magnonic crystals

    Get PDF
    Strongly-interacting nanomagnetic arrays are crucial across an ever-growing suite of technologies. Spanning neuromorphic computing, control over superconducting vortices and reconfigurable magnonics, the utility and appeal of these arrays lies in their vast range of distinct, stable magnetization states. Different states exhibit different functional behaviours, making precise, reconfigurable state control an essential cornerstone of such systems. However, few existing methodologies may reverse an arbitrary array element, and even fewer may do so under electrical control, vital for device integration. We demonstrate selective, reconfigurable magnetic reversal of ferromagnetic nanoislands via current-driven motion of a transverse domain wall in an adjacent nanowire. The reversal technique operates under all-electrical control with no reliance on external magnetic fields, rendering it highly suitable for device integration across a host of magnonic, spintronic and neuromorphic logic architectures. Here, the reversal technique is leveraged to realize two fully solid-state reconfigurable magnonic crystals, offering magnonic gating, filtering, transistor-like switching and peak-shifting without reliance on global magnetic fields

    Neglect of Medical Evidence of Torture in Guantánamo Bay: A Case Series

    Get PDF
    Vincent Iacopino and Stephen Xenakis review case records of nine individuals imprisoned at Guantánamo Bay which indicate that medical personnel assigned to the US Department of Defense neglected and/or concealed medical evidence of torture

    Comparison of type 5d autotransporter phospholipases demonstrates a correlation between high activity and intracellular pathogenic lifestyle

    Get PDF
    Autotransporters, or type 5 secretion systems, are widespread surface proteins of Gram-negative bacteria often associated with virulence functions. Autotransporters consist of an outer membrane β-barrel domain and an exported passenger. In the poorly studied type 5d subclass, the passenger is a patatin-like lipase. The prototype of this secretion pathway is PlpD of Pseudomonas aeruginosa , an opportunistic human pathogen. The PlpD passenger is a homodimer with phospholipase A1 (PLA1) activity. Based on sequencing data, PlpD-like proteins are present in many bacterial species. We characterized the enzymatic activity, specific lipid binding and oligomeric status of PlpD homologs from Aeromonas hydrophila (a fish pathogen), Burkholderia pseudomallei (a human pathogen) and Ralstonia solanacearum (a plant pathogen) and compared these with PlpD. We demonstrate that recombinant type 5d-secreted patatin domains have lipase activity and form dimers or higher-order oligomers. However, dimerization is not necessary for lipase activity; in fact, by making monomeric variants of PlpD, we show that enzymatic activity slightly increases while protein stability decreases. The lipases from the intracellular pathogens A. hydrophila and B. pseudomallei display PLA2 activity in addition to PLA1 activity. Although the type 5d-secreted lipases from the animal pathogens bound to intracellular lipid targets, phosphatidylserine and phosphatidylinositol phosphates, hydrolysis of these lipids could only be observed for FplA of Fusobacterium nucleatum . Yet, we noted a correlation between high lipase activity in type 5d autotransporters and intracellular lifestyle. We hypothesize that type 5d phospholipases are intracellularly active and function in modulation of host cell signaling events

    Partial purification of alpha-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems

    Get PDF
    The original publication can be found at www.springerlink.comA study was made of the partition and purification of -amylase from a culture supernatant of Bacillus subtilis in the polyethylene glycol (PEG)—citrate aqueous two-phase system (ATPS). Factors that influenced the partition of the protein in this system, including the molecular weight of the PEG, the tie line length of ATPS, the pH value and the sodium chloride concentration, were investigated. Purification of -amylase was attained with a purification factor (PF) of 1.8 and 90% yield at pH 6.0 in a PEG1000-citrate ATPS with short tie line length. By utilizing the salt-out effect of neutral salt, the purification of -amylase was further improved to 2.0 of PF and 80% yield in a PEG3350-citrate ATPS with 4% sodium chloride.Wenbo Zhi, Jiangnan Song, Jingxiu Bi and Fan Ouyan

    A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain

    Get PDF
    Molinillo,S., Ekinci, Y., Japutra, A. (2014)'A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain'. in Martínez-López, Gázquez-Abad, J.C. and Sethuraman, R. J.A. (eds.) Advances in National Brand and Private Label Marketing. Second International Conference, 2015. Springer Proceedings in Business and Economics, pp. 113-125In recent years a number of Consumer-Based Brand Equity (CBBE) models and measurement scales have been introduced in the branding literature. However, examinations of brand equity in Private Labels (PL) are rather limited. This study aims to compare the validity of the two prominent CBBE models those introduced by Yoo and Donthu (2001) and Nam et al. (2011). In order to test the models and make this comparison, the study collected data from 236 respondents who rated private labels in Spain. A list of 30 different fashion and sportswear PL was introduced to respondents. These brands do not make any reference to the retail store in which they are sold. Research findings suggest that the extended CBBE model introduced by Nam et al. (2011) and Ciftci et al. (2014) is more reliable and valid than Yoo and Donthu’s model for assessing PL. Theoretical contributions and managerial implications are discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Current-controlled nanomagnetic writing for reconfigurable magnonic crystals

    Get PDF
    Strongly-interacting nanomagnetic arrays are crucial across an ever-growing suite of technologies. Spanning neuromorphic computing, control over superconducting vortices and reconfigurable magnonics, the utility and appeal of these arrays lies in their vast range of distinct, stable magnetisation states. Different states exhibit different functional behaviours, making precise, reconfigurable state control an essential cornerstone of such systems. However, few existing methodologies may reverse an arbitrary array element, and even fewer may do so under electrical control, vital for device integration. We demonstrate selective, reconfigurable magnetic reversal of ferromagnetic nanoislands via current-driven motion of a transverse domain wall in an adjacent nanowire. The reversal technique operates under all-electrical control with no reliance on external magnetic fields, rendering it highly suitable for device integration across a host of magnonic, spintronic and neuromorphic logic architectures. Here, the reversal technique is leveraged to realise two fully solid-state reconfigurable magnonic crystals, offering magnonic gating, filtering, transistor-like switching and peak-shifting without reliance on global magnetic fields

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. <p/>Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. <p/>Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. <p/>Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    Symptomatic snapping knee from biceps femoris tendon subluxation: an unusual case of lateral pain in a marathon runner

    Get PDF
    Snapping biceps femoris syndrome is an uncommon cause of lateral knee pain and may be difficult to diagnose, resulting in unsuccessful surgical intervention. In this report, we present an unusual case of a 37-year-old male marathon runner with unilateral snapping knee secondary to dislocation of the long head of the biceps femoris over the fibular head during knee flexion. The pain was great enough to interfere with his ability to practice sport. Possible causes of symptomatic snapping knee include multiple intra-articular or extra-articular pathology. Biceps femoris snapping over the fibular head is a rare condition. Reported causes include an anomalous insertion of the tendon into the tibia, trauma, and fibular-head abnormality. However, none of those conditions accounted for his symptoms. Failing conservative treatment, the patient underwent surgery for partial resection of the fibular head, with subsequent sudden resolution of symptoms and return to sport. Accurate knowledge and management of this rare condition is mandatory to avoid inappropriate therapy and unnecessary surgical procedures

    Alumina-on-alumina total hip replacement for femoral neck fracture in healthy patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total hip replacement is considered the best option for treatment of displaced intracapsular fractures of the femoral neck (FFN). The size of the femoral head is an important factor that influences the outcome of a total hip arthroplasty (THA): implants with a 28 mm femoral head are more prone to dislocate than implants with a 32 mm head. Obviously, a large head coupled to a polyethylene inlay can lead to more wear, osteolysis and failure of the implant. Ceramic induces less friction and minimal wear even with larger heads.</p> <p>Methods</p> <p>A total of 35 THAs were performed for displaced intracapsular FFN, using a 32 mm alumina-alumina coupling.</p> <p>Results</p> <p>At a mean follow-up of 80 months, 33 have been clinically and radiologically reviewed. None of the implants needed revision for any reason, none of the cups were considered to have failed, no dislocations nor breakage of the ceramic components were recorded. One anatomic cementless stem was radiologically loose.</p> <p>Conclusions</p> <p>On the basis of our experience, we suggest that ceramic-on-ceramic coupling offers minimal friction and wear even with large heads.</p
    corecore