151 research outputs found

    WirePlanner: Fast, Secure and Cost-Efficient Route Configuration for SD-WAN

    Full text link
    As enterprises increasingly migrate their applications to the cloud, the demand for secure and cost-effective Wide Area Networking (WAN) solutions for data transmission between branches and data centers grows. Among these solutions, Software-Defined Wide Area Networking (SD-WAN) has emerged as a promising approach. However, existing SD-WAN implementations largely rely on IPSec tunnels for data encryption between edge routers, resulting in drawbacks such as extended setup times and limited throughput. Additionally, the SD-WAN control plane rarely takes both latency and monetary cost into consideration when determining routes between nodes, resulting in unsatisfactory Quality of Service (QoS). We propose WirePlanner, an SD-WAN solution that employs a novel algorithm for path discovery, optimizing both latency and cost, and configures WireGuard tunnels for secure and efficient data transmission. WirePlanner considers two payment methods: Pay-As-You-Go, where users pay for a fixed amount of bandwidth over a certain duration, and Pay-For-Data-Transfer, where users pay for the volume of transmitted data. Given an underlay topology of edge routers and a user-defined budget constraint, WirePlanner identifies a path between nodes that minimizes latency and remains within the budget, while utilizing WireGuard for secure data transmission

    Effects of fully open-air [CO2] elevation on leaf photosynthesis and ultrastructure of Isatis indigotica Fort

    Get PDF
    Traditional Chinese medicine relies heavily on herbs, yet there is no information on how these herb plants would respond to climate change. In order to gain insight into such response, we studied the effect of elevated [CO2] on Isatis indigotica Fort, one of the most popular Chinese herb plants. The changes in leaf photosynthesis,chlorophyll fluorescence, leaf ultrastructure and biomass yield in response to elevated [CO2] (550619 mmol mol–1) were determined at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic ability of I. indigotica was improved under elevated [CO2]. Elevated [CO2] increased net photosynthetic rate (PN), water use efficiency (WUE) and maximum rate of electron transport (Jmax) of upper most fully-expended leaves, but not stomatal conductance (gs), transpiration ratio (Tr) and maximum velocity of carboxylation (Vc,max). Elevated [CO2] significantly increased leaf intrinsic efficiency of PSII (Fv’/Fm’) and quantum yield of PSII(WPSII), but decreased leaf non-photochemical quenching (NPQ), and did not affect leaf proportion of open PSII reaction centers (qP) and maximum quantum efficiency of PSII (Fv/Fm). The structural chloroplast membrane, grana layer and stroma thylakoid membranes were intact under elevated [CO2], though more starch grains were accumulated within the chloroplasts than that of under ambient [CO2]. While the yield of I. indigotica was higher due to the improved photosynthesis under elevated [CO2], the content of adenosine, one of the functional ingredients in indigowoad root was not affected

    A Causal Framework to Unify Common Domain Generalization Approaches

    Full text link
    Domain generalization (DG) is about learning models that generalize well to new domains that are related to, but different from, the training domain(s). It is a fundamental problem in machine learning and has attracted much attention in recent years. A large number of approaches have been proposed. Different approaches are motivated from different perspectives, making it difficult to gain an overall understanding of the area. In this paper, we propose a causal framework for domain generalization and present an understanding of common DG approaches in the framework. Our work sheds new lights on the following questions: (1) What are the key ideas behind each DG method? (2) Why is it expected to improve generalization to new domains theoretically? (3) How are different DG methods related to each other and what are relative advantages and limitations? By providing a unified perspective on DG, we hope to help researchers better understand the underlying principles and develop more effective approaches for this critical problem in machine learning

    3D printing high interfacial bonding polyether ether ketone components via pyrolysis reactions

    Get PDF
    Recently, 3D-printed polyether-ether-ketone (PEEK) components have been shown to offer many applications in state-of-the-art electronics, 5G wireless communications, medical implantations, and aerospace components. Nevertheless, a critical barrier that limits the application of 3D printed PEEK components is their weak interfacial bonding strength. Herein, we propose a novel method to improve this unsatisfied situation via the interface plasticizing effect of benzene derivatives obtained from the thermal pyrolysis of trisilanolphenyl polyhedral oligomeric silsequioxane (POSS). Based on this method, the bonding strength of the filaments and interlayers of 3D-printed POSS/PEEK components can reach 82.9 MPa and 59.8 MPa, respectively. Moreover, the enhancing mechanism of the pyrolysis products derived from the POSS is characterized using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), Fourier transform infrared spectroscopy (FTIR), and X-ray computed tomography (X-CT). Our proposed strategy broadens the novel design space for developing additional 3D-printed materials with satisfactory interfacial bonding strength

    Comparing glycemic traits in defining diabetes among rural Chinese older adults

    Get PDF
    The protocol of MIND-China was registered in the Chinese Clinical Trial Registry (ChiCTR, www.chictr.org.cn; registration no.: ChiCTR1800017758).Background: We sought to identify the optimal cut-off of glycated hemoglobin (HbA1c) for defining diabetes and to assess the agreements of fasting plasma glucose (FPG), fasting serum glucose (FSG), and HbA1c in defining diabetes among rural older adults in China. Methods: This population-based cross-sectional study included 3547 participants (age ≥61 years, 57.8% women) from the Multidomain Interventions to Delay Dementia and Disability in Rural China from 2018-2019; of these, 3122 had no previously diagnosed diabetes. We identified the optimal cut-off of HbA1c against FPG ≥7.0 mmol/L for defining diabetes by using receiver operating characteristic curve and Youden index. The agreements of FPG, FSG, and HbA1c in defining diabetes were assessed using kappa statistics. Results: Among participants without previously diagnosed diabetes (n = 3122), the optimal HbA1c cut-off for defining diabetes was 6.5% (48 mmol/mol), with the sensitivity of 88.9%, specificity of 93.7%, and Youden index of 0.825. The correlation coefficients were 0.845 between FPG and FSG, 0.574 between FPG and HbA1c, and 0.529 between FSG and HbA1c in the total sample (n = 3547). The kappa statistic for defining diabetes was 0.962 between FSG and FPG, and 0.812 between HbA1c and FPG. Conclusions: The optimal cut-off of HbA1c for diagnosing diabetes against FPG >7.0 mmol/L is ≥6.5% in Chinese rural-dwelling older adults. The agreement in defining diabetes using FPG, FSG, and HbA1c is nearly perfect. These results have relevant implications for diabetes research and clinical practice among older adults in China. Clinical trial registration: The protocol of MIND-China was registered in the Chinese Clinical Trial Registry (ChiCTR, www.chictr.org.cn; registration no.: ChiCTR1800017758).Y Du was supported by the major grant from the National Key R&D Program of the Ministry of Sciences and Technology of China (Grant No.: 2017YFC1310100) and by additional grants from the National Nature Science Foundation of China (Grants No.: 81861138008 and 82011530139), the Academic Promotion Program of Shandong First Medical University (2019QL020), and the Taishan Scholar Program of Shandong Province, China (Tsqn201909182). C Qiu received grants from the Swedish Research Council (Grants No.: 2017-05819 and 2020-01574), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) (Grant No.: CH2019-8320) for the Joint China-Sweden Mobility program, and the Karolinska Institutet, Stockholm, Sweden. The funding agency had no role in the study design, data collection and analysis, the writing of this manuscript, and in the decision to submit the work for publication.S

    The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites

    Get PDF
    Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APCCdh1 plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1. We show that the removal of USP1 depends on APCCdh1 and requires Chk1 activation known to be catalysed by ssDNA-RPA-ATR signalling at the ends designated for HDR, linking the status of end processing to RIF1 or BRCA1 recruitment.We thank S.-Y. Lin (MD Anderson Cancer Center) for cell lines; J. Rosen (Baylor College of Medicine) for reagents; H. Masai (Tokyo Metropolitan Institute of Medical Science) for U2OS-Fucci cell line; D. Durocher (University of Toronto) for HeLa-Fucci cell line; E. Citterio (Netherlands Cancer Institute) for GFP-USP3 construct; M.S.Y. Huen (The University of Hong Kong) for RNF168 antibody. This work was performed with facilities and instruments in the Imaging Core of National Center for Protein Science (Beijing), the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the NIH (P30 AI036211, P30 CA125123 and S10 RR024574), the Integrated Microscopy Core at Baylor College of Medicine with funding from the NIH (HD007495, DK56338 and CA125123), and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. We also thank other members of the Zhang lab for helpful discussion and support. This work was supported in part by an international collaboration grant (# 2013DFB30210) and a 973 Project grant (# 2013CB910300) from Chinese Minister of Science and Technology, in part by a Chinese National Natural Science Foundation grant (# 81171920), in part by a grant from The Committee of Science and Technology of Beijing Municipality, China (# Z141100000214015), and in part by NIH grants CA116097 and CA122623 to P.Z. J.J. is supported by grants from National Institutes of Health (R01GM102529) and the Welch Foundation (AU-1711). S.H. is supported by grants (# 81272488 and 81472795) from Chinese National Natural Science Foundation. Y.Z. is supported by grants from the National Natural Scientific Foundation of China (No. 81430055), Programs for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R13).S

    The Neuroprotection of KIBRA in Promoting Neuron Survival and Against Amyloid β-Induced Apoptosis

    Get PDF
    Background: Recent research has identified the nucleotide polymorphisms of KIdney and BRAin expressed protein (KIBRA) to be associated with cognitive performance, suggesting its vital role in Alzheimer’s disease (AD); however, the underlying molecular mechanism of KIBRA in AD remains obscure.Methods: The AD animal model (APP/PS1 transgenic mice) and KIBRA knockout (KIBRA KO) mice were used to investigate pathophysiological changes of KIBRA in vivo. Mouse hippocampal cell line (HT22) was used to explore its molecular mechanism through KIBRA CRISPR/Cas9-sgRNA system and KIBRA overexpression lentivirus in vitro.Results: Aged APP/PS1 mice displayed increased neuronal apoptosis in the hippocampus, as did KIBRA KO mice. KIBRA deficiency was closely related to neuronal loss in the brain. In addition, knockdown of KIBRA in neuronal cell lines suppressed its growth and elevated apoptosis-associated protein levels under the stress of Aβ1–42 oligomers. On the contrary, overexpression of KIBRA significantly promoted cell proliferation and reduced its apoptosis. Moreover, through screening several survival-related signaling pathways, we found that KIBRA inhibited apoptosis by activating the Akt pathway other than ERK or PKC pathways, which was further confirmed by Akt-specific inhibitor MK2206.Conclusion: Our data indicate that KIBRA may function as a neuroprotective gene in promoting neuron survival and inhibiting Aβ-induced neuronal apoptosis

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    The hemispheric contrast in cloud microphysical properties constrains aerosol forcing

    Get PDF
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm−3 and 24 cm−3. By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m−2 to −0.6 W⋅m−2. The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models
    • …
    corecore