97 research outputs found

    High-temperature modification of steel slag using composite modifier containing silicon calcium slag, fly ash, and reservoir sediment

    Get PDF
    Steel slag (SS) is a kind of industrial solid waste, and its accumulation brings certain harm to the ecological environment. In order to promote the building material utilization of SS, high-temperature modification (HTM) of SS is performed using a composite modifier (CMSFR) containing silicon calcium slag (SCS), fly ash (FA), and reservoir sediment (RS). Then, the authors investigated the effect of CMSFR on the cementitious properties and volume soundness of SS mixture after HTM (SMHTM). After that, the mineral composition and microstructure of SMHTM were investigated through X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectrometry (EDS), and particle size analysis. It was found that the free CaO (f-CaO) content obviously decreased, and the cementitious properties improved in SMHTM. When the CMSFR content was 20% (SCS: FA: RS = 9:7:4), and the modification temperature (MT) was 1,250°C, the mass fraction of f-CaO in SMHTM dropped from 4.81% to 1.90%, down by 60.5%; the 28-day activity index of SMHTM increased to 85.4%, 14.3% higher than that of raw SS, which meets the technical requirement of Steel slag powder used for cement and concrete (GB/T 20491-2017): the activity index of grade I SS powder must be greater than or equal to 80%. As the mass fraction of CMSFR grew from 10% to 30%, new mineral phases formed in SMHTM, including diopside (CMS2), ceylonite (MgFe2O4), gehlenite (C2AS), tricalcium aluminate (C3A), and magnetite (Fe3O4). The HTM with CMSFR promotes the decomposition of RO phase (a continuous solid solution composed of divalent metal oxides like FeO, MgO, MnO, and CaO) in raw SS, turning the FeO in that phase into Fe3O4. The above results indicate that the SMHTM mixed with CMSFR can be applied harmless in cement and concrete, making low-energy fine grinding of SS a possibility

    Effects of diffuser airflow minima on occupant comfort, air mixing, and building energy use (RP-1515)

    Get PDF
    There is great energy-saving potential in reducing variable air volume (VAV) box minimum airflow setpoints to about 10% of maximum.  Typical savings are on the order of 10-30% of total HVAC energy, remarkable for an inexpensive controls setpoint change that properly maintains outside air ventilation. However, there has long been concern whether comfort and room air mixing are maintained under low flows through diffusers, and this concern has prompted VAV minima to be typically set at 20-50% of maximum.RP 1515 evaluated occupants’ thermal comfort and air quality satisfaction in operating buildings under both conventional and reduced minimum VAV flow setpoints, and measured the air diffusion performance index and air change effectiveness for typical diffuser types in the laboratory.  The hypotheses were that lowered flow operation would not significantly reduce comfort or air quality, and that HVAC energy savings would be substantial. The hypotheses were almost entirely confirmed for both warm and cool seasons.  But beyond this, the reduction of excess airflow during low-load periods caused occupants’ cold discomfort in the warm season to be halved, a surprising improvement.  It appears that today’s widespread overcooling of buildings can be corrected without risk of discomfort by lowering conventional VAV minimum flow setpoints

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    International audienc

    A review of the corrective power of personal comfort systems in non-neutral ambient environments

    Full text link
    This paper discusses a spectrum of systems that cool or heat occupants personally, termed ‘personal comfort systems’ (PCS), in order to quantify their ability to produce comfort in ambient temperatures that are above or below the subjects’ neutral temperatures.The comfort-producing effectiveness may be quantified in terms of a temperature difference, coining the index ‘corrective power’ (CP). CP is defined as difference between two ambient temperatures at which equal thermal sensation is achieved - one with no PCS (the reference condition), and one with PCS in use.  CP represents the degree to which a PCS system may “correct” the ambient temperature toward neutrality. CP can alternatively be expressed in terms of thermal sensation and comfort survey scale units.Published studies of PCS are reviewed to extract their CP values. Cooling CP ranges from -1 to -6K, and heating CP from 2K to 10K.  The physical characteristics of the particular PCS systems are not reported in detail here, but are presented as prototypes of what is possible.  Deeper understanding of PCS will require new physiological and psychological information about comfort in local body segments and subsegments, and about spatial and temporal alliesthesia.  These topics present many opportunities for productive future research
    • 

    corecore