221 research outputs found

    μ-Opioid Receptor Up-Regulation and Functional Supersensitivity Are Independent of Antagonist Efficacy

    Full text link

    Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists.

    Get PDF
    Novel analogs of the P2 receptor antagonist pyridoxal-5'-phosphate-6-phenylazo-2',4'-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5'-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X(1) receptors in differentiated HL-60 cell membranes was carried out by using [(35)S]ATP-?-S. A 2'-chloro-5'-sulfo analog of PPADS (C(14)H(12)O(9)N(3)ClPSNa), a vinyl phosphonate derivative (C(15)H(12)O(11)N(3)PS(2)Na(3)), and a naphthylazo derivative (C(18)H(14)O(12)N(3)PS(2)Na(2)), were particularly potent in binding to human P2X(1) receptors. The potencies of phosphate derivatives at P2Y(1) receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C(15)H(13)O(8)N(3)PNa and its m-chloro analog C(15)H(12)O(8)N(3)ClPNa, which were selective for P2X vs. P2Y(1) receptors. C(15)H(12)O(8)N(3)ClPNa was very potent at rat P2X(2) receptors with an IC(50) value of 0.82 ?M. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C(14)H(12)-O(8)N(3)ClPSNa) showed high potency at P2Y(1) receptors with an IC(50) of 7.23 ?M. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 ?M. An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors

    In Vivo Activity of Norhydrocodone: An Active Metabolite of Hydrocodone

    Full text link

    Aβ-40 Y10F Increases βfibrils Formation but Attenuates the Neurotoxicity of Amyloid-β Peptide

    Get PDF
    Alzheimer’s disease (AD) is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10) is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F) in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine. The aggregation rate was determined by the Thioflavin T (ThT) assay, in which Aβ-40 Y10F populated an ensemble of folded conformations much quicker and stronger than the wild type Aβ. Biophysical tests subsequently confirmed the results of the ThT assay, suggesting the measured increase of β-aggregation may arise predominantly from enhancement of hydrophobicity upon substitution and thus the propensity of intrinsic β-sheet formation. Nevertheless, Aβ-40 Y10F exhibited remarkably decreased neurotoxicity compared to Aβ-40 which could be partly due to the reduced generation of hydrogen peroxide. These findings may lead to further understanding of the structural perturbation of Aβ to its fibrillation
    corecore