vir Puonc Access

Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists

Yong-Chul Kim ${ }^{1}$, Emidio Camaioni ${ }^{1}$, Airat U. Ziganshin ${ }^{2,3}$, Xiao-duo Ji ${ }^{1}$, Brian F. King ${ }^{2}$, Scott S. Wildman ${ }^{2}$, Alexei Rychkov ${ }^{3}$, Joshua Yoburn ${ }^{1}$, Heaok Kim ${ }^{1}$, Arvind Mohanram ${ }^{4}$, T. Kendall Harden ${ }^{3}$, José L. Boyer ${ }^{4}$, Geoffrey Burnstock ${ }^{2}$, and Kenneth A. Jacobson ${ }^{1, *}$
${ }^{1}$ Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland ${ }^{2}$ Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, London, United Kingdom ${ }^{3}$ Kazan Medical Institute, Kazan, Russia ${ }^{4}$ Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina

Abstract

Novel analogs of the P 2 receptor antagonist pyridoxal- -5^{\prime}-phosphate- 6 -phenylazo- $2^{\prime}, 4^{\prime}$ disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P 2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6phenylazo derivatives, 5^{\prime}-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2 Y_{1} receptors, in guinea-pig vas deferens and bladder $\mathrm{P} 2 \mathrm{X}_{1}$ receptors, and in ion flux experiments by using recombinant rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors expressed in Xenopus oocytes. Competitive binding assay at human P2 X_{1} receptors in differentiated HL-60 cell membranes was carried out by using $\left[{ }^{35}\right.$ S]ATP- γ-S. A 2^{\prime}-chloro-5' ${ }^{\prime}$-sulfo analog of PPADS ($\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{9} \mathrm{~N}_{3} \mathrm{ClPSNa}$), a vinyl phosphonate derivative $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{11} \mathrm{~N}_{3} \mathrm{PS}_{2} \mathrm{Na}_{3}\right)$, and a naphthylazo derivative $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{12} \mathrm{~N}_{3} \mathrm{PS}_{2} \mathrm{Na}_{2}\right)$, were particularly potent in binding to human $\mathrm{P} 2 \mathrm{X}_{1}$ receptors. The potencies of phosphate derivatives at P2 Y_{1} receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{PNa}$ and its m-chloro analog $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{ClPNa}$, which were selective for P 2 X vs. $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{ClPNa}$ was very potent at rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors with an IC_{50} value of $0.82 \mu \mathrm{M}$. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5yl]methylphosphonic acid $\left(\mathrm{C}_{14} \mathrm{H}_{12}-\mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{ClPSNa}\right)$ showed high potency at $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors with an IC_{50} of $7.23 \mu \mathrm{M}$. The corresponding 2,5 -disulfonylphenyl derivative was nearly inactive at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, whereas at recombinant $\mathrm{P} 2 \mathrm{X}_{2}$ receptors had an IC_{50} value of $1.1 \mu \mathrm{M}$. An ethyl phosphonate derivative $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{11} \mathrm{~N}_{3} \mathrm{PS}_{2} \mathrm{Na}_{3}\right)$, whereas inactive at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, was particularly potent at recombinant $\mathrm{P} 2 \mathrm{X}_{2}$ receptors.

[^0]
Keywords

ATP; nucleotides; ion channels; phospholipase C; smooth muscle; guinea pig; turkey erythrocytes

INTRODUCTION

Extracellular adenine nucleosides and nucleotides, acting through P1 and P2 receptors [North and Barnard, 1997; Burnstock, 1996], are widely accepted as neuro-modulators and neurotransmitters in the central and peripheral nervous systems. Two families of P2 receptors, ligand-gated ion channels (P2X subtype) and G protein-coupled receptors (P2Y subtype), have been recently classified [Abbracchio and Burnstock, 1994]. Numerous subtypes of ATP receptors have been cloned, and it is now clear that uracil nucleotides [Communi and Boeynaems, 1997] are also active or even the preferred ligands at some of the P 2 Y subtypes. $\mathrm{P} 2 \mathrm{X}_{1-7}$ and $\mathrm{P} 2 \mathrm{Y}_{1,2,4,6}$ designations have been unambiguously assigned to mammalian nucleotide receptors [Burnstock and King, 1996; Fredholm et al., 1997], although there is still uncertainty about the correspondence of these cloned sequences to pharmacologic phenotypes. Other novel mammalian P2Y subtypes, numbering up to P2Y Y_{11}, have recently been reported [Communi et al., 1997].

The most significant evidence for ATP acting as a cotransmitter was reported for the sympathetic neurotransmission system in which norepinephrine and ATP are coreleased [Burnstock, 1993]. In vas deferens, isolated blood vessels, skeletal muscle, intestine, kidney and skin, norepinephrine and ATP cause synergistic constriction by means of $a_{1^{-}}$ adrenoceptors and P2X receptors, respectively. In rabbit coronary vessels, guinea-pig taenia coli, rat aorta, and rat mesenteric artery, the predominant effect of those transmitters is relaxation by means of β-adrenoceptors and P2Y receptors. Besides sympathetic neurotransmission, P2 receptors are also suggested to function in parasympathetic, sensorymotor NANC inhibitory, and somatic neuromuscular neurotransmission. In platelets, an as yet uncloned $\mathrm{P}_{2 \text { T }}$ receptor [Hourani and Hall, 1996; Greco, 1997] has been shown to be activated mainly by ADP to cause platelet aggregation and is blocked by ATP. More recently, a hypothesis was reported that $\mathrm{P} 2 \mathrm{X}_{3}$ receptors mediate nociception by means of the dorsal root ganglia, whereas activation of P1 receptors seems to result in anti-nociception [Burnstock and Wood, 1996]. The therapeutic potential [Williams, 1996; Williams and Bhagwat, 1996] and physiologic role of P2 receptors also have been reviewed in various biological systems, including brain [Inoue et al., 1996], central nervous [Gibb and Halliday, 1996], sensory nervous [Thorne and Housley, 1996], cardiovascular [Rongen et al., 1997], immune [Di Virgilio et al., 1996], and renal microvascular [Inscho, 1996] systems.

Progress in the field of P 2 receptors has been impeded because of the lack of useful ligands, especially P2 receptor selective antagonists and radioligands [Jacobson et al., 1997]. A synthetic polyanionic substance, pyridoxal-5'-phosphate-6-phenylazo-2,4-disulfonate (PPADS), was shown to be a P2 receptor antagonist [Lambrecht et al., 1996]. In smooth muscle assays, it antagonized P2X receptors in rabbit vas deferens [Lambrecht et al., 1992], urinary bladder [Ziganshin et al., 1993], isolated blood vessels [Ziganshin et al., 1994], guinea-pig isolated vas deferens [McLaren et al., 1994], and rat perfused mesenteric arterial bed [Windscheif et al., 1994]. PPADS was initially reported to show moderate selectivity for P2X vs. P2Y receptors [Windscheif et al., 1995a]; however, it was later shown to be more potent than anticipated at $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors [Schachter et al., 1996]. At the $\mathrm{P} 2 \mathrm{Y}_{1}$ subtype, PPADS was a competitive antagonist exhibiting an equilibrium inhibition constant $\left(\mathrm{K}_{\mathrm{i}}\right)$ value of approximately $1 \mu \mathrm{M}$. PPADS had low affinity at the adenylate cyclase-coupled P2Y receptor in rat C6 glioma cells [Boyer et al., 1994], at the $\mathrm{P}_{2 \mathrm{U}}$ receptor in bovine aortic
endothelial cells [Brown et al., 1995], and at $\mathrm{P}_{2 \mathrm{~T}}$ receptors in human platelets [Windscheif et al., 1995b].

In the present study, the structure-activity relationships (SARs) of a series of pyridoxal-6-arylazo-5-phosphate derivatives and corresponding phosphonate congeners are reported (Fig. 1). Both radioligand binding and pharmacologic assays have been conducted with the aim of developing more potent and selective antagonists for P 2 receptor subtypes.

MATERIALS AND METHODS

Pyridoxal-5-phosphate and the reagents for azo coupling reactions were purchased from Aldrich (St. Louis, MO). The aniline derivatives were obtained from Aldrich, Fluka (St. Louis, MO), Lancaster (Windham, NH), Pfaltz \& Bauer (Waterbury, CT), and Eastman Kodak (Rochester, NY).

Synthesis

Proton nuclear magnetic resonance spectroscopy was performed on a Varian GEMINI-300 spectrometer and spectra were taken in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$. The chemical shifts are expressed as parts per million downfield from tetramethylsilane or as relative parts per million from HOD peaks (4.78 ppm). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were recorded at room temperature by use of Varian XL-300 spectrometer (121.42 MHz); orthophosphoric acid (85%) was used as an external standard. High-resolution fast atom bombardment mass was performed with JEOL SX102 spectrometer using $6-\mathrm{kV}$ Xe atoms. The phosphate and phosphonate derivatives were desorbed from glycerol or magic bullet matrix.

All pyridoxal phosphate and phosphonate derivatives showed more than 95% purity in high pressure liquid chromatography (HPLC) systems. The determinations of purity were performed with a Hewlett-Packard 1090 HPLC system using an OD-5-60 C18 analytical column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, Separation Methods Technologies, Inc., Newark, DE) in two different linear gradient solvent systems. One solvent system (A) was 0.1 M triethylammonium acetate buffer: $\mathrm{CH}_{3} \mathrm{CN}=95: 5$ to $40: 60$ for 20 min with a flow rate of 1 $\mathrm{ml} / \mathrm{min}$. The other solvent system (B) was 5 mM tetrabutylammonium phosphate buffer: $\mathrm{CH}_{3} \mathrm{CN}$ 80:20 to 40:60, in 20 min with a flow rate of $1 \mathrm{ml} / \mathrm{min}$. Peaks were detected by ultraviolet absorption with a diode array detector.

General Procedure of Azo Coupling for the Synthesis of PPADS Analogs

To a stirred solution of each aminoaryl compound (0.4 mmol) in 10 ml of water was added $0.4 \mathrm{ml}(0.4 \mathrm{mmol})$ of 1 N HCl and $28 \mathrm{mg}(0.4 \mathrm{mmol})$ of solid NaNO_{2} at $0^{\circ} \mathrm{C}$. This solution was stirred for 5 min and the pH was adjusted to ~ 10 with 1 N NaOH (about 0.2 ml). To the mixture was added dropwise a solution of pyridoxal-5-phosphate ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) or a phosphonate (0.4 mmol) previously dissolved in aqueous $\mathrm{NaOH}(\mathrm{pH} \sim 10)$. The pH was adjusted to ~ 9, and the yellow color changed to red. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the progress of reaction was monitored by HPLC using solvent system A. The product peaks appeared at retention times of $8-10 \mathrm{~min}$ with an ultraviolet absorption maximum at ~ 410 nm .

The mixture was frozen and lyophilized, leaving a solid. The crude product was dissolved in a minimal volume of water and purified by ion-exchange column chromatography by using Amberlite CG-50 resin (H^{+}form, weakly acidic) and eluting with water (flow rate $0.5 \mathrm{ml} /$ min). The red fraction showing a single peak in HPLC was collected and lyophilized to give the desired compounds (yield, 50-60\%).

Starting with the intermediates $19,22,26,28$, and pyridoxal- ${ }^{5}$-phosphate (1) and following the general procedure, we have synthesized compounds $2,4,7-16,20,21,23-25,27,29$, 30, and 32-34 (Table 1).

6-Phenylazo-pyridoxal- ${ }^{5}$-phosphate (sodium salt) (2)— ${ }^{1}{ }^{1} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.45$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.67\left(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.49(3 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.78(2 \mathrm{H}, \mathrm{m}$, aromatic-H), $10.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Pyridoxal- $\mathbf{\alpha}^{5}$-phosphate-6-phenylazo-3'-sulfonate (sodium salt) (4)—1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.82\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.72(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.96(1 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}, \mathrm{Ph}), 8.12(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ph}), 8.31(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Pyridoxal- ${ }^{5}$-phosphate-6-phenylazo-2'-methoxy-5'-sulfonate (sodium salt) (8) - $^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.81\left(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $7.37(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 7.94(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.50(1 \mathrm{H}, \mathrm{s}$, CHO).

Pyridoxal- ${ }^{5}$-phosphate-6-phenylazo-3'-carboxylic acid (sodium salt) (9)— ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.73\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{Ph})$, 8.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 8.24 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 10.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pyridoxal- α^{5}-phosphate-6-phenylazo-4'-carboxylic acid (sodium salt) (10)— ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.80\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.00(4 \mathrm{H}, \mathrm{bs}, \mathrm{Ph}), 10.51$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pyridoxal- α^{5}-phosphate-6-phenylazo-3'-chloro-2'-carboxylic acid (sodium salt) (11)— ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.81\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.52(1 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.65(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.92(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 10.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

6-(2'-chloro-phenylazo)-pyridoxal- ${ }^{5}$-phosphate (sodium salt) (12)— ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.74\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.58(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.74(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 10.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Pyridoxal- ${ }^{5}$-phosphate-6-phenylazo-2'-chloro-5'-sulfonate (sodium salt) (13) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.81\left(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.75(1 \mathrm{H}, \mathrm{d}, J=7.8$ Hz, Ph), 7.84 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}$), 8.13 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 10.49 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pyridoxal- ${ }^{5}$-phosphate-6-phenylazo-2'-chloro-5'-carboxylic acid (sodium salt) (14)-1 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.83\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.70(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ph}), 7.99(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}), 8.18$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), $10.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Pyridoxal- ${ }^{5}$-phosphate-6-phenylazo-3'-chloro-4'-carboxylic acid (sodium salt) (15)—1 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.78\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.57(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.93$ ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}$), 8.03 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 10.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

6-(2'-Chloro-5'-nitro-phenylzao)-pyridoxal- ${ }^{5}$-phosphate (sodium salt) (16) ${ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.86\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.86(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{Ph}), 8.31(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 8.51(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Dimethyl (3, ${ }^{4}$-O-Isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5yl)methylphosphonate (37)—To a solution of $5.11 \mathrm{~g}(0.0244 \mathrm{~mol})$ of 35 in 100 ml of benzene, was added $1.92 \mathrm{ml}(0.0264 \mathrm{~mol})$ of thionyl chloride. The mixture was refluxed for

10 min with stirring and cooled to room temperature. The white solid was collected through filtration, washed with anhydrous acetone, and dried under vacuum to afford $36(6.1 \mathrm{~g}$, $95 \%)$: mass spectrum (MS) $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 228\left(\mathrm{M}^{+}+1\right), 245\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $1.64\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 8.31(1 \mathrm{H}, \mathrm{s}$, H6). The solution of 36 in 50 ml of trimethylphosphite was heated at $80^{\circ} \mathrm{C}$ for 48 h and evaporated under vacuum. The residue was purified by flash silica gel column chromatography with $\mathrm{CHCl}_{3}: \mathrm{MeOH}=60: 1$ to afford 37 as a colorless oil ($4.76 \mathrm{~g}, 61 \%$): MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 302\left(\mathrm{M}^{+}+1\right), 319\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$; high resolution mass spectroscopy (HRMS) (EI) calcd. 301.1079, found 301.1064; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.55\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.00\left(2 \mathrm{H}, \mathrm{d}, J=21.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.93(2 \mathrm{H}, \mathrm{s}$, CH_{2}), 7.92 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6$).

Dimethyl (3-hydroxy-4-hydroxymethyl-2-methylpyrid-5-yl)methylphosphonate (38)—A solution of $4.5 \mathrm{~g}(0.0149 \mathrm{~mol})$ of 37 in 30 ml of 10% formic acid was refluxed for 2 h . After cooling, the mixture was partitioned between CHCl_{3} and saturated NaHCO_{3}, and the aqueous layer was extracted three times. The combined CHCl_{3} layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and purified by flash silica gel column chromatography with $\mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1$ to afford 38 as a white solid ($2.62 \mathrm{~g}, 67 \%$): $\mathrm{mp}=139-141^{\circ} \mathrm{C}$; MS (CI, NH_{3}) 262($\mathrm{M}^{+}+1$); HRMS (EI) calcd. 261.0766, found 261.0752; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.14\left(2 \mathrm{H}, \mathrm{d}, J=20.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$.

Dimethyl (4-formyl-3-hydroxy-2-methyl-pyrid-5-yl)methylphosphonate (39)—To a solution of $1.05 \mathrm{~g}(4.02 \mathrm{mmol})$ of 38 in 80 ml of anhydrous CHCl_{3} was added powdered activated MnO_{2} with vigorous stirring for 2 h at room temperature under N_{2} atmosphere. The mixture was filtered through a Celite bed, and the filtrate was evaporated under vacuum to afford 39 as a yellow oil ($1.01 \mathrm{~g}, 97 \%$): HRMS (EI) calcd. 259.0609 , found $259.0594 ;{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.39,3.46\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 11.59(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$.

4-Formyl-3-hydroxy-2-methyl-pyrid-5-yl)methylphosphonic acid (19)—To a stirred solution of $0.8 \mathrm{~g}(3.09 \mathrm{mmol})$ of 39 in 30 ml of anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise $1.68 \mathrm{ml}(12.3 \mathrm{mmol})$ of trimethylsilyl bromide. The mixture was stirred overnight and evaporated under vacuum. The residue was mixed with 10 ml of water and followed by dropwise addition of 6.5 ml of $0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ solution with stirring until the mixture became a clear solution. The solution was washed with ether and applied to an Amberlite CG-50 (H+ form) ion exchange column followed by elution with water. The pure fractions determined by HPLC were collected and lyophilized to afford 19 as a yellow solid (0.55 g , $77 \%): \mathrm{mp}=310^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.36(2 \mathrm{H}, \mathrm{d}, J=19.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 7.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 17.12(\mathrm{t}, J=19.4 \mathrm{~Hz}$, phosphonic acid).

5-Formyl-3, a^{4}-O-isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyridine

(40)—To a solution of $5.0 \mathrm{~g}(0.0239 \mathrm{~mol})$ of 35 in 100 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added powdered pyridinium dichromate (PDC) with vigorous stirring. After overnight stirring, the mixture was filtered through a Celite bed. The filtrate was evaporated under vacuum and purified by flash silica gel column chromatography with $\mathrm{CHCl}_{3}: \mathrm{MeOH}=80: 1$ to afford 40 as a colorless oil ($3.81 \mathrm{~g}, 77 \%$): MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 208\left(\mathrm{M}^{+}+1\right), 225\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.57\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$, $10.05(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Ethyl 2-(3, α^{4}-O-isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5$\mathbf{y l})$ propenoate (41)—To a suspension of $1.6 \mathrm{~g}(0.04 \mathrm{~mol})$ of 60% sodium hydride (prewashed twice with hexanes) in 200 ml of anhydrous tetrahydrofuran (THF) was added dropwise $8.01 \mathrm{ml}(0.04 \mathrm{~mol})$ of triethylphosphonoacetate. The mixture became a clear solution with evolution of H_{2} gas. After 5 min of stirring, $7.56 \mathrm{~g}(0.0364 \mathrm{~mol})$ of 40 in 2 ml of anhydrous THF was added and the solution stirred for 30 min . The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated aqueous NaCl , and the organic layer dried under anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under vacuum. The product was crystallized from hexanes to afford 41 as a white solid ($9.65 \mathrm{~g}, 96 \%$): $\mathrm{mp}=81-83^{\circ} \mathrm{C}$. Analysis: calcd. C 64.96, H 6.91, N 5.05; found C 65.06, H 6.94, N 5.01; MS (CI, NH3 $) 278\left(\mathrm{M}^{+}+1\right)$, 295(M $\left.+\mathrm{NH}_{4}{ }^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left(3 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.57\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.44(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.37(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}, \mathrm{CH})$, $7.54(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}, \mathrm{CH}), 8.27(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$.

3-(3, α^{4}-O-Isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5-yl)-1propenol (42a)—To a stirred solution of $9.35 \mathrm{~g}(0.0337 \mathrm{~mol})$ of 41 in 120 ml of anhydrous THF was added $165 \mathrm{ml}(0.165 \mathrm{~mol})$ of 1.0 M diisobutyl aluminum hydride (DIBAL-H) solution in THF at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, an additional 2 h at room temperature, and quenched by 0.1 ml of MeOH . The mixture was poured into ice-cold 0.1 N HCl , the pH was adjusted to $7-8$, and the product was extracted with 100 ml of EtOAc three times. The combined EtOAc layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under vacuum, and purified by flash silica gel column chromatography with $\mathrm{CHCl}_{3}: \mathrm{MeOH}=$ 100:1 to afford 42 a as a white solid ($5.3 \mathrm{~g}, 67 \%$): $\mathrm{mp}=120-122^{\circ} \mathrm{C}$; HRMS (EI) calcd. 235.1214, found 235.1208; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.54\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $4.33\left(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.27(1 \mathrm{H}, \mathrm{dt}, J=4.9,15.6 \mathrm{~Hz}, \mathrm{CH}), 6.42$ $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$.

3-(3, α^{4}-O-Isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5-yl)-1propenylchloride hydro-chloride salt (42b)-5.0 g (0.0212 mol) of 42 a reacted by using the same method as for 36 to afford $42 b$ as a white solid $(4.1 \mathrm{~g}, 67 \%): \mathrm{mp}=187^{\circ} \mathrm{C}$ (dec.); HRMS (EI) calcd. 253.0870, found 253.0878; MS (CI, NH_{3}) 254($\mathrm{M}^{+}+1$), 271(M $\left.+\mathrm{NH}_{4}{ }^{+}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.63\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.26(2 \mathrm{H}, \mathrm{d}, J=4.9$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 4.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.46-6.58(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 8.247(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$.

Dimethyl 3-(3, α^{4}-O-isopropylidene-3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5-yl)-1-propenylphosphonate (42c)- $0.14 \mathrm{~g}(0.482 \mathrm{mmol})$ of $42 b$ reacted by using the same method as for 37 except for the reaction temperature $\left(120^{\circ} \mathrm{C}\right)$ to afford 42 c as a colorless oil ($0.07 \mathrm{~g}, 45 \%$): HRMS (EI) calcd. 327.1235, found 327.1241; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.55\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.79\left(2 \mathrm{H}, \mathrm{dd}, J=8.8,22.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.02-6.12(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.36(1 \mathrm{H}$, dd, $J=4.9,15.6 \mathrm{~Hz}, \mathrm{CH}), 8.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$.

Dimethyl 3-(3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5-yl)-1propenylphosphonate (43)-1.5g(4.58 mmol) of $42 b$ reacted by using the same method as for 38 to afford 43 as a colorless oil ($0.97 \mathrm{~g}, 74 \%$): HRMS (EI) calcd. 287.0922, found 287.0924; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.74(2 \mathrm{H}, \mathrm{dd}, J=7.8,22.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.79-5.92(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.46$ ($1 \mathrm{H}, \mathrm{dd}, J=4.9,15.6 \mathrm{~Hz}, \mathrm{CH}$), 7.83 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6$).

3-(4-Formyl-3-hydroxy-2-methyl-pyrid-5-yl)-1-propenylphosphonic acid (31)— $0.2 \mathrm{~g}(0.696 \mathrm{mmol})$ of 43 reacted by using the same method as for 38 to 19 to afford 31 as a yellow solid (0.12 g , two steps in 67%): $\mathrm{mp}=118^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.39(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CH}_{3}\right), 2.62,2.68\left(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2}\right), 6.14-6.27(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.58,6.88(1 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}), 7.85$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 20.15(\mathrm{dq}, J=20.1,4.9 \mathrm{~Hz}$, phosphonic acid).

Dimethyl 3-(3-hydroxy-4-hydroxymethyl-2-methyl-pyrid-5-yl) propylphosphonate (44)—To a solution of $0.36 \mathrm{~g}(1.25 \mathrm{mmol})$ of 43 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.36 g of Pd / C and stirred under H_{2} atmosphere (1 atm) at room temperature for 5 h . The mixture was filtered through Celite bed. The filtrate was evaporated under vacuum and purified by flash silica gel column chromatography with $\mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1$ to afford 44 as a colorless oil ($0.34 \mathrm{~g}, 93.8 \%$): HRMS (EI) calcd. 289.1079, found 289.1073; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.77-1.87\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, J=6.8, \mathrm{CH}_{2}\right), 3.73$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 9.07(2 \mathrm{H}, \mathrm{bs}, 2 \times$ OH).

3-(4-Formyl-3-hydroxy-2-methyl-pyrid-5-yl)-propylphosphonic acid (28)—0.23 g (0.8 mmol) of 44 reacted by using the same method as for 38 to 19 to afford 28 as a yellow solid (0.15 g , two steps in 72%): $\mathrm{mp}=128^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta 1.28-1.37$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.58-1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.21,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.61-2.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $7.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \delta 22.65-23.01(\mathrm{~m}$, phosphonic acid).

2-(4-Formyl-3-hydroxy-2-methyl-pyrid-5-yl)ethylphosphonic acid (22)—The title compound was synthesized by the reported method [Hullar, 1969] with minor modification of reagents. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right)$ d $1.47-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.22$, $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75-$ $2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.29(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}\right) \mathrm{d}$ 21.41-21.71 (m, phosphonic acid).

2-(4-Formyl-3-hydroxy-2-methyl-pyrid-5-yl)-ethenylphosphonic acid (26)—The title compound was synthesized by the reported method [Hullar, 1969] with minor modification of reagents. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.41(1 \mathrm{H}, \mathrm{dd}, J=17.6,20.5$ $\mathrm{Hz}, \mathrm{CH}), 7.61(1 \mathrm{H}, \mathrm{dd}, J=17.6,20.5 \mathrm{~Hz}, \mathrm{CH}), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 10.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{31} \mathrm{P}-$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 10.77-11.08$ (m , phosphonic acid).
[(4-Formyl-3-hydroxy-2-methyl-6-(2',5'-disulfonylphenylazo))-pyrid-5yl]methylphosphonate (sodium salt) (20)— ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.98,4.05\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2}\right), 7.82(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 8.04(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 8.16$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.
[(4-Formyl-3-hydroxy-2-methyl-6-(2'-chloro-5'-sulfonylphenylazo))-pyrid-5yl]methylphosphonate (sodium salt) (21)—${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.41,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.92,3.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 8.03(1 \mathrm{H}$, s, Ph), 10.25 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

2-[(4-Formyl-3-hydroxy-2-methyl-6-(2',5'-disulfonylphenylazo))-pyrid-5yl]ethylphosphonate (sodium salt) (23)-1/H-NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 1.88-1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.40,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.51-3.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.76(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 8.01(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{Ph}), 8.20(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.25$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

2-[(4-Formyl-3-hydroxy-2-methyl-6-(2'-chloro-5'-sulfonylphenylazo))-pyrid-5yl]ethylphosphonate (sodium salt) (24)-1 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.86-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.40,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.59-3.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}), 7.74(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ph}), 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

2-[(4-Formyl-3-hydroxy-2-methyl-6-(4'-carboxyphenylazo))-pyrid-5yl]ethylphosphonate (sodium salt) (25)— ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.83-1.95(2 \mathrm{H}$, bm, CH_{2}), 2.42, ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.45-3.62 ($2 \mathrm{H}, \mathrm{bm}, \mathrm{CH}_{2}$), $7.83(4 \mathrm{H}, \mathrm{dd}, J=38.1,6.8 \mathrm{~Hz}, \mathrm{Ph})$, 10.35 (1H, s, CHO).

2-[(4-Formyl-3-hydroxy-2-methyl-6-(2',5'-disulfonylphenylazo))-pyrid-5yl]ethenylphosphonate (sodium salt) (27)—The title compound was purified by crystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$, due to the instability during the ion-exchange chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.05(1 \mathrm{H}, \mathrm{dd}, J=17.6,19.5 \mathrm{~Hz}, \mathrm{CH})$, $7.78(1 \mathrm{H}, \mathrm{dd}, J=17.6,19.5 \mathrm{~Hz}, \mathrm{CH}), 7.85(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}), 8.08(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\mathrm{Ph}), 8.31(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

3-[(4-Formyl-3-hydroxy-2-methyl-6-(2',5'-disulfonylphenylazo))-pyrid-5yl]propylphosphonate (sodium salt) (29)— ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 1.77-1.83(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 2.41,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.32-3.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.75(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.99(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 8.16(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

3-[(4-Formyl-3-hydroxy-2-methyl-6-(2'-chloro-5'-disulfonylphenylazo))-pyrid-5yl]propylphosphonate (sodium salt) (30)- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.63-1.86(4 \mathrm{H}, \mathrm{m}, 2 \times$ CH_{2}), 2.42, ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.43-3.47 (2H, m, CH2), $7.62(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.74(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{Ph}), 7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 10.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Pyridoxal- α^{5}-phosphate-6-(2'-naphthylazo-5',7'-disulfonate) (sodium salt) (32) $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.48,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.74,\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2}\right), 8.29(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Naph})$, 8.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Naph}$), 8.57 ($2 \mathrm{H}, \mathrm{bs}, \mathrm{Naph}$), 8.70 ($1 \mathrm{H}, \mathrm{d} J=9.8 \mathrm{~Hz}, \mathrm{Naph}$), 10.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pyridoxal- ${ }^{5}$-phosphate-6-(2'-naphthylazo-6', 8^{\prime}-disulfonate) (sodium salt) (33) $-^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.36,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.71,\left(2 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{CH}_{2}\right), 7.97(2 \mathrm{H}, \mathrm{pt}$, Naph), 8.35 (2H, pt, Naph), 9.05 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{Naph}$), 10.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pyridoxal- ${ }^{5}$-phosphate-6-(2'-naphthylazo-3',6', 8^{\prime}-trisulfonate) (sodium salt) (34)— ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \mathrm{d} 2.58$, $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.87,\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.53(1 \mathrm{H}, \mathrm{s}$, Naph), 8.70 ($1 \mathrm{H}, \mathrm{s}$, Naph), 8.79 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Naph}$), 10.57 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Pharmacology

Binding assay in differentiated HL-60 cell membranes-Human HL-60 cells were obtained from American Type Culture Collection (Rockville, MD) and cultured in PRMI 1640 supplemented with 10% fetal bovine serum. To differentiate HL-60 cells, 1×10^{6} cells/ ml were treated with phorbol myristate acetate $(60 \mathrm{ng} / \mathrm{ml})$ for 72 h . The differentiated cells were washed twice with 10 ml of 10 mM Tris, 5 mM ethylenediaminetetraacetic acid buffer, pH 8.25 at $5^{\circ} \mathrm{C}$, and then scraped into 5 ml of the same buffer, The cells were homogenized, the suspension was centrifuged at $35,000 \times \mathrm{g}$ for 20 min and the resulting pellet was resuspended in 50 mM Tris buffer, pH 8.25 at $5^{\circ} \mathrm{C}$, containing 1 mM ethylenediaminetetraacetic acid. Membranes were frozen at $-80^{\circ} \mathrm{C}$ before assay. The binding of $0.2 \mathrm{nM}\left[{ }^{35} \mathrm{~S}\right] \mathrm{ATP} \gamma \mathrm{S}$ to $\mathrm{HL}-60$ cell membranes was determined as described [Buell et al., 1996] in a final assay volume of 0.25 ml . Incubations for 3 h at $4^{\circ} \mathrm{C}$ were terminated by vacuum filtration. Non-specific binding was defined by using $10 \mu \mathrm{M} \mathrm{ATP} \gamma \mathrm{S}$.

Antagonism of contractile responses of the guinea-pig urinary bladder and vas deferens and relaxant responses of the guinea-pig taenia coli-Male white guinea-pigs ($250-400 \mathrm{~g}$) were killed by a blow to the head and exsanguination. The urinary bladder, vasa deferentia, and ventricular taenia coli were removed and strips of smooth
muscle, approximately $2 \times 10 \mathrm{~mm}$, were prepared and suspended vertically in 10 ml organ baths for isometric recording of mechanical activity. An initial load of 1 g was applied to the strips which then were allowed to equilibrate for at least 60 min . Electrical field stimulation (EFS) was applied by means of two platinum-wire rings 2.5 mm in diameter, 10 mm apart, through which the strip was threaded. The modified Krebs solution used in these experiments had the following composition (mM): $\mathrm{NaCl} 133, \mathrm{KCl} 4.7, \mathrm{NaHCO}_{3} 16.4$, $\mathrm{MgSO}_{4} 0.6, \mathrm{NaH}_{2} \mathrm{PO}_{4} 0.8, \mathrm{CaCl}_{2} 2.5$ and glucose 7.7 , gassed with $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}(\mathrm{pH}$ 7.3-7.4) and maintained at $37 \pm 1^{\circ} \mathrm{C}$. Contractions were recorded with a Linton FSG-01 force-displacement transducer, acquired by Biopac MP100WSW Data Acquisition System and displayed on a PC screen. EFS was provided by a Grass S9 stimulator and applied at a given frequency with a pulse width of 0.5 ms and supramaximal voltage. Adenosine-5' triphosphate disodium salt (ATP), phentolamine, atropine sulphate and carbamylcholine chloride (carbachol) were obtained from Sigma (St. Louis, MO).

Atropine $(0.3 \mu \mathrm{M})$ and phentolamine $(1 \mu \mathrm{M})$ were present in a Krebs solution throughout experiments on urinary bladder and vas deferens. Tissue was stimulated with EFS (0.5-64 Hz) until a maximal contraction was reached and the tone declined by approximately 30%. Intervals of 1 min were maintained between stimulations. All contractile responses were calculated as a percentage of the response evoked by KCl at a concentration of 240 mM , which was added at the end of the experiment.

In experiments on taenia coli, relaxant responses to ATP $(1,10$, and $100 \mu \mathrm{M})$ and to EFS $(0.5-8 \mathrm{~Hz})$ were measured by using carbachol (25 nM) -precontracted tissue. Intervals of 10 min were maintained between two subsequent precontractions by carbachol for washout. Relaxant responses were calculated as a percentage of maximal relaxation possible.

Responses to EFS and ATP were examined in preparations before and after incubation with a given compound at a concentration of 10 and $30 \mu \mathrm{M}$ for at least 30 min . Time-control preparations were maintained in parallel and established that there was no significant change in response to EFS or ATP throughout experiments.

Each concentration of compound was tested three times on tissues from three different animals $(\mathrm{n}=3)$. Means were compared by the paired Student's t -test. A probability of $=0.05$ was considered as significant. Data are presented as mean $(\mathrm{M}) \pm$ s.e.m.

Antagonist activity at recombinant $\mathbf{P} 2 X_{2}$ receptors-Xenopus oocytes were harvested and prepared as previously described [King et al., 1997]. Defolliculated oocytes were injected cytosolically with rat $\mathrm{P}_{2} \mathrm{X}_{2}$ cRNA ($30 \mathrm{~nL}, 1 \mu \mathrm{~g} / \mathrm{ml}$) [Brake et al., 1994] incubated for 24 h at $18^{\circ} \mathrm{C}$ in Barth's solution and kept for up to 12 days at $4^{\circ} \mathrm{C}$ until used in electrophysiologic experiments.

ATP-activated membrane currents $\left(\mathrm{V}_{\mathrm{h}}=-90 \mathrm{mV}\right)$ were recorded from cRNA-injected oocytes by using the twin-electrode voltage-clamp technique (Axoclamp 2B amplifier). Voltage recording ($1-2 \mathrm{M} \Omega$ tip resistance) and current-recording microelectrodes ($5 \mathrm{M} \Omega$ tip resistance) were filled with $0.6 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ and 3.0 M KCl , respectively. Oocytes were held in an electrophysiologic chamber and superfused with Ringer's solution ($5 \mathrm{mM} / \mathrm{min}$, at $18^{\circ} \mathrm{C}$) containing (mM) $\mathrm{NaCl}, 110 ; \mathrm{KCl}, 2.5 ; \mathrm{HEPES}, 5 ; \mathrm{CaCl}_{2}, 1.8$, adjusted to pH 7.5 .

ATP ($10 \mu \mathrm{M}$, approximately the EC_{70} value) was superfused over the oocytes for 120 s then washed out for a period of 5 min . For inhibition curves, data were normalized to the current evoked by ATP at pH 7.5 . Test substances were added for 5 min before ATP exposure; all compounds were tested for reversibility of their effects. The concentration required to inhibit the ATP response by $50 \%\left(\mathrm{IC}_{50}\right)$ was taken from Hill plots constructed by using the formula
$\log \left(\mathrm{I} / \mathrm{I}_{\max }-1\right)$, where I is the current evoked by ATP in the presence of an antagonist. Data are presented as mean \pm s.e.m. $(n=4)$ for data from different batches of oocytes.

Phospholipase C assay- $\mathrm{P}_{2} \mathrm{Y}_{1}$ receptor-promoted stimulation of inositol phosphate formation by adenine nucleotide analogs was measured in turkey erythrocyte membranes as previously described [Harden et al., 1988; Boyer et al., 1989]. The $\mathrm{K}_{0.5}$ values were averaged from three to eight independently determined concentration-effect curves for each compound. Briefly, 1 ml of washed turkey erythrocytes was incubated in inositol-free medium (DMEM; Gibco, Gaithersburg, MD) with 0.5 mCi of $2-\left[{ }^{3} \mathrm{H}\right]$ myo-inositol ($20 \mathrm{Ci} /$ mmol; American Radiolabeled Chemicals, Inc., St. Louis, MO) for 18-24 h in a humidified atmosphere of 95% air $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. Erythrocyte ghosts were prepared by rapid lysis in hypotonic buffer (5 mM sodium phosphate, $\mathrm{pH} 7.4,5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EGTA) as previously described [Boyer et al., 1989]. Phospholipase C activity was measured in $25 \mu \mathrm{l}$ of [${ }^{3} \mathrm{H}$]inositol-labeled ghosts ($\sim 175 \mu \mathrm{~g}$ of protein, 200-500,000 cpm/assay) in a medium containing $424 \mu \mathrm{M} \mathrm{CaCl}_{2}, 0.91 \mathrm{mM} \mathrm{MgSO} 4,2 \mathrm{mM}$ EGTA, $115 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$, and 10 mM HEPES, pH 7.0 . Assays ($200-\mu \mathrm{l}$ final volume) contained $1 \mu \mathrm{M}$ GTP $\gamma \mathrm{S}$ and the indicated concentrations of nucleotide analogs. Ghosts were incubated at $30^{\circ} \mathrm{C}$ for 5 min , and total $\left[{ }^{3} \mathrm{H}\right]$ inositol phosphates were quantitated by anion exchange chromatography as previously described [Harden et al., 1988; Boyer et al., 1989].

Agonist potencies were calculated by using a four-parameter logistic equation and the GraphPad software package (GraphPad, San Diego, CA). Antagonist IC 50 values (mean \pm standard error) represent the concentration needed to inhibit by 50% the effect elicited by 10 nM 2-methylthioadenosine-5'-diphosphate. All concentration-effect curves were repeated in at least three separate experiments carried out with different membrane preparations by using duplicate or triplicate assays.

RESULTS

Synthesis
The 6-arylazopyridoxal-5-phosphate analogs that were prepared and characterized (Table 1) could be divided into three categories. Among substituted-phenylazo derivatives and their precursors (Table 2) there are both 5-phosphate (compounds 1-18) and 5-phosphonate (compounds 19-31) analogs, and several naphthylazo pyridoxal-5-phosphate derivatives (compounds 32-34) have been included. The phosphate analogs were modified through substitution of the phenyl ring with sulfo, chloro, nitro, and carboxylate groups. The phosphonate analogs all contain 5^{\prime}-sulfo and either chloro- or sulfo-groups at the 2^{\prime} position. Several compounds (compounds $1-3,5,6,17$, and 18) previously reported by Lambrecht [1996] are included in this study for comparison.

The synthetic procedures for the various 3-hydroxy-2-methyl-pyridine-5-alkyl or 5-olefinic phosphonic acid derivatives are shown in Scheme 1. The starting isopropylidene derivative, 35, was synthesized from pyridoxine according to the previous report [Yang et al., 1991]. The transformation of hydroxymethyl group of 35 to the corresponding chloromethyl group of 36 [Tomita et al., 1966], followed by an Arbuzov reaction using trimethylphosphite, afforded the phosphonate compound, 37 with an overall yield of 61%. After the hydrolytic cleavage of isopropylidene group of 37 with 10% formic acid, oxidation of 4-hydroxymethyl group of 38 with activated manganese (IV) oxide provided the 4 -formyl compound 39 in high yield. A mild deprotection of the dimethyl ester of the phosphonate was accomplished by an ester exchange reaction by using trimethylsilyl bromide and followed by hydrolysis of the silyl esters. After purification, by using ion exchange chromatography (Amberlite $\mathrm{CG}-50, \mathrm{H}^{+}$form), 19 was isolated in moderate yield.

The precursor for chain extension between the pyridine ring and the phosphonic acid group was compound 40 , which was obtained by oxidation of 35 by using PDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 5-trans-Vinyl and 5-ethyl phosphonate derivatives, 26 and 22 , were synthesized by the reported procedures [Hullar, 1969] with minor modification of reagents. 5-Allyl and 5propyl phosphonic acid derivatives were prepared through a Wittig reaction of the aldehyde group [Tomita et al., 1966] in 40 leading to the trans-vinyl carboxylic acid ester, 41. Selective reduction of the ester in 41 with DIBAL-H afforded the alcohol 42a, which was converted to phosphonate 31 by using the same procedures as for the preparation of 19 from 35. A saturated propyl phosphonate, 28, was prepared through catalytic reduction of the dimethyl phosphonate intermediate, 43 , followed by oxidation and deprotection.

The phosphonic acid derivatives, $19,22,26$, and 28 were subjected to the azo coupling reaction (Scheme 2) with two different aromatic amine moieties, aniline-2,5-disulfonic acid and aniline-2-chloro-5-sulfonic acid. The azo-linked products obtained were compounds 20, $21,23-25,27,29$, and 30 (Table 2). The chemical characterization and HPLC retention times in two solvent systems of these compounds are reported in Table 1.

Radioligand Binding Studies at Human P2X $\mathbf{1}_{1}$ Receptors

Assays at P2X receptors consisted of both radioligand binding and biological assays. The binding assay involved inhibition of specific binding of $\left[{ }^{35} \mathrm{~S}\right]$ ATP- $\gamma-\mathrm{S}$ to membranes of HL-60 cells. The $\mathrm{P} 2 \mathrm{X}_{1}$ receptor is the principal subtype of P 2 receptors expressed in differentiated HL-60 cells, and agonist binding selectivities determined with HL-60 membranes were shown by Buell et al. [1996] to correspond to the affinity of agonists at the human $\mathrm{P}_{2} \mathrm{X}_{1}$ receptor. We verified that the order of potency in inhibition of radioligand binding by known receptor agonists and antagonists was approximately as expected from the published potencies at $\mathrm{P} 2 \mathrm{X}_{1}$ receptors. For example, the following IC_{50} values (all nM) were measured: ATP, 5.51 ± 0.37; ATP- $\gamma-\mathrm{S}, 3.88 \pm 1.14 ; 2$-Cl-ATP, $6.55 \pm 1.60 ; \mathrm{L}-\beta, \gamma-$ me-ATP; $24,800 \pm 5400$; suramin, 730 ± 171.

The IC_{50} values for most of the PPADS derivatives in the $\mathrm{P} 2 \mathrm{X}_{1}$ receptor binding assay were greater than $100 \mu \mathrm{M}$ (Table 3). Even PPADS, σ, displayed only 18% inhibition at $100 \mu \mathrm{M}$, which was somewhat weaker than expected. IsoPPADS, 7 , was somewhat more potent than PPADS in inhibition of binding. Several derivatives displayed relatively favorable affinity in the binding assay. For example, a phenylazo phosphonate derivative, 27 , and a naphthylazo phosphate derivative, 32 , exhibited IC_{50} values of 10 and $15 \mu \mathrm{M}$, respectively. Both of these compounds contained two sulfonate groups on the aryl rings. Compound 2, an unsubstituted phenylazo phosphate derivative, was of intermediate affinity with an IC_{50} value of $45 \mu \mathrm{M}$.

Smooth Muscle Assays at Guinea-pig P2X $\mathbf{1}_{\mathbf{1}}$ Receptors—Functional assays consisted of classic smooth muscle systems, specifically antagonism of electric fieldstimulated contraction (P2X system) of vas deferens and guinea-pig urinary bladder. Most of the phosphate and a few phosphonate derivatives displayed antagonism to some degree in the smooth muscle assays of guinea-pig $\mathrm{P}_{2} \mathrm{X}_{1}$ receptors in the urinary bladder [Ziganshin et al., 1993] and vas deferens [McLaren et al., 1994]. The three most potent analogs in the human $\mathrm{P} 2 \mathrm{X}_{1}$ receptor binding assay, i.e., 2,27 , and 32 , showed considerable potency of varying degrees in these smooth muscle assays. The compounds that consistently showed the greatest degree of antagonism in both bladder and vas deferens were: $8,10,13,20$, and 34. Curiously, compounds $12,16,21$, and $28-30$ antagonized electric field-induced contraction in the vas deferens but not in the bladder. Compound 10 , a phosphate derivative that contained a carboxyl group at the 4-position of the phenylazo ring, displayed a particularly favorable degree of antagonism in both bladder (Fig. 2A) and vas deferens (Fig.

2B). The m-chloro- p-carboxyphenylazo derivative 15 inhibited contraction in the bladder, whereas in the vas deferens inhibition occurred at $=16 \mathrm{~Hz}$ but not at 8 Hz stimulation.

Smooth Muscle Assay at Guinea-pig P2Y ${ }_{1}$ Receptors and Biochemical Assay at Turkey Erythrocyte $\mathrm{P}^{2} \mathrm{Y}_{1}$ Receptors

Antagonism at $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors was established by using a smooth muscle system, i.e. guinea-pig taenia coli, in which antagonism of either agonist-induced or electric fieldinduced relaxation was measured [Windscheif et al., 1995a]. The phenylazo derivative phosphate derivative 2 and the ethylphosphonate analog of isoPPADS 23 had measurable K_{B} values in antagonizing ATP-induced relaxation of 6.3 and $12.5 \mu \mathrm{M}$, respectively. Other compounds that consistently showed the greatest degree of antagonism in the guinea-pig taenia coli were $8,9,11,19,29$, and 34 . The ethyl phosphonate derivative 25 was essentially inactive at guinea-pig $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors and was also inactive as an antagonist at $\mathrm{P}_{2 \mathrm{Y}}$ receptors of C6 glioma cells (data not shown) [Boyer et al., 1994]. The compounds were further evaluated at the phospholipase C-coupled $\mathrm{P} 2 \mathrm{Y}_{1}$ receptor of turkey erythrocytes. At both guinea-pig and turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, most of the phosphate derivatives, except for compounds 10 and 15 , showed activity similar to PPADS, 6 . Compounds 10 and 15 were either inactive or very weak at both taenia coli (Fig. 3) and turkey erythrocyte P2Y ${ }_{1}$ receptors. Potency of antagonism at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors among compounds with IC_{50} values of $\langle 10 \mu \mathrm{M}$ decreased in the order $12,21,14,34\rangle 8,13,24,16,33,32,6$. Phosphonate derivatives, except for compounds 21 and 24 , were inactive or very weak at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors. Compound 21 , although relatively potent at turkey erythrocyte $\mathrm{P}_{2} \mathrm{Y}_{1}$ receptors (IC_{50} value of $7.23 \mu \mathrm{M}$), was inactive in the guinea-pig taenia coli. Among the phosphonate congeners, the homologous 2-chloro-5-sulfonyl-phenylazo phosphonate derivatives 21,24 , and 30 displayed a trend of decreasing potency at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, depending on the chain length between the pyridine ring and phosphorous atom (Table 3). Nevertheless, a measurable potency (IC_{50} value of $20.2 \mu \mathrm{M}$) was observed even for the propyl phosphonate 30 .

Curiously, the propyl phosphonate derivative 30 and the naphthylazo derivative 33 seemed to enhance the relaxation of the taenia coli in response to ATP but not to electrical stimulation. This phenomenon may conceivably occur through potential inhibition of enzymes which degrade ATP, such as nucleotidases, by the analogs. Numerous derivatives that act as ATP antagonists are also known to inhibit ecto-nucleotidases [Jacobson et al., 1997].

Although pyridoxal-5-phosphate 1 itself has P2-antagonist properties [Trezise et al., 1994], the presence of the 6-arylazo moiety (with or without substitution) clearly enhanced potency at P2 receptors. The other non-azo-linked pyridoxal-5-phosphate/phosphonate precursors 19, 22, 26, and 28 were all essentially inactive at turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors.

Recombinant Rat P2X 2 Receptor Ion Channel Assay-Compounds were tested in a functional assay of recombinant rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors expressed in Xenopus oocytes, in which ATP-induced currents were inhibited (Fig. 4) [King et al., 1997]. Of the novel compounds synthesized in our study, compound 15 was the most potent at rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors, with an IC_{50} value of $0.82 \mu \mathrm{M}$. Thus, 15 was intermediate in potency between isoPPADS, 7 , and PPADS, σ, which had IC_{50} values of 0.40 and $1.6 \mu \mathrm{M}$, respectively. Other compounds that displayed roughly the same potency as PPADS at rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors were the unsubstituted phenylazo derivative 2 , the m-carboxyphenylazo derivative 9 , the methylphosphonate analog of isoPPADS 20, and the corresponding ethylphosphonate 23 , and the p carboxyphenylazo ethylphosphonate derivative 25 . The order of potency at rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors evident in Figure 4 was $7>15>20,2>23,6>25$, 9 . Thus, the particular
combination of phosphonate and substituted phenylazo units has indications of displaying relatively high potency at the $\mathrm{P} 2 \mathrm{X}_{2}$ receptor subtype.

PPADS has been shown to inhibit P2X receptors with slow reversibility [Windscheif et al., 1995a; Humphrey et al., 1995]. The effects of some derivatives (2, 7, 15, 20, 23, and 25) at the rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptor were readily reversible, whereas others $(6,9,10,22$, and 29) were only slowly reversible (data not shown).

DISCUSSION

In contrast to the initial reports, it seems that PPADS is not selective for P2X receptors. As reconfirmed in this study, PPADS also has considerable affinity for P2Y receptors [Schachter et al., 1996; Boyer et al., 1994; Brown et al., 1995]. In the present study, PPADS and isoPPADS and numerous analogs thereof, were compared in a variety of P2X and P2Y receptor assays. We have shown that at rat $\mathrm{P} 2 \mathrm{X}_{2}$ and turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, isoPPADS is more potent as an antagonist than PPADS. Recently we have shown that isoPPADS is more potent than PPADS also at recombinant rat $\mathrm{P} 2 \mathrm{X}_{1}$ receptors [Jacobson et al., 1998]. Thus, the $2^{\prime}, 5^{\prime}$-disulfonate substitution of the phenylazo ring is a more favorable lead structure for ligand development than the $2^{\prime}, 4^{\prime}$-isomer.

In the present study, we have greatly expanded the range of PPADS and isoPPADS analogs for the study of SARs and selectivity at various P2 receptor subtypes. Based on mutagenesis results, the 4 -aldehyde moiety of PPADS is proposed to aid in binding of the antagonist through the formation of a Schiff base with the ε-amino group of a specific lysine residue on the large extracellular domain of $\mathrm{P} 2 \mathrm{X}_{1}$ and $\mathrm{P} 2 \mathrm{X}_{2}$ receptors [Humphrey et al., 1995]. All of the present analogs have retained the aldehyde group. The potency of PPADS as a P2X antagonist has been reported to be not highly dependent on substituents in the 6-phenylazo ring, except for electron-withdrawing substituents, such as a nitro group, which decreases the potency [Lambrecht et al., 1996]. We have confirmed that the unsubstituted phenylazo derivative 2 acts as a P2 receptor antagonist and found further substitution patterns on the arylazo ring that serve to modulate the potency and selectivity of the derivatives.

A major finding of the present study is that the phosphate group of PPADS may be replaced with a phosphonate resulting in preservation of P2 receptor antagonist properties. The 5methylphosphate group of PPADS was previously shown to be required for its activity as a P2 receptor antagonist [Trezise et al., 1994], and the present study reveals that a phosphonate substitution is also acceptable for P 2 receptor antagonism. The phosphonate group may be linked to the pyridine ring at the 5-position through a hydrocarbon chain consisting of methyl, ethyl, propyl, vinyl or allyl groups. Among the these analogs, the saturated chain-linked phosphonate compound 23 showed significant selectivities for $\mathrm{P} 2 \mathrm{X}_{2}$ receptors vs. $\mathrm{P} 2 \mathrm{X}_{1}$ or $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors, whereas in the case of vinyl phosphonate analogs the potency at $\mathrm{P} 2 \mathrm{X}_{1}$ receptors was restored. These results indicate that altering the electron density or electrostatic potential surrounding the phosphate group in PPADS may be a means of resolving selectivity among the subtypes.

Compounds 10 and 15 , both of which contained a carboxyl group at the 4-position of the phenylazo ring, displayed particularly good selectivity for P 2 X compared with $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors (Figs. 2, 3). Of the novel compounds synthesized in our study, compound 15 , a 3^{\prime} -chloro- 4^{\prime}-carboxylic acid derivative, was the most potent at $\mathrm{P} 2 \mathrm{X}_{2}$ receptors. Compound 15 was essentially inactive at guinea-pig and turkey $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors and at $30 \mu \mathrm{M}$ only moderately antagonized guinea-pig bladder $\mathrm{P} 2 \mathrm{X}_{1}$ receptors (see below). Thus, compound 15 is of further interest as a selective pharmacologic probe of $\mathrm{P} 2 \mathrm{X}_{2}$ receptors. Compound 10 , a 4^{\prime}-carboxylic acid derivative, and compound 20 , a methylphosphonate derivative, were not
very selective within P2X subtypes examined but were highly selective when compared with $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors. Also, compounds 23 and 25 were relatively potent at rat $\mathrm{P} 2 \mathrm{X}_{2}$ receptors, whereas 23 was relatively weak at both $\mathrm{P} 2 \mathrm{X}_{1}$ and $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors (Table 3). Considerable differences between the taenia coli and turkey P2Y receptors in antagonist potency were evident (Table 3), suggesting the presence of different subtypes. Similarly among agonists, a, β-me-ATP is active in the taenia coli [Burnstock et al, 1994] but not at recombinant P2Y receptors.

The development of potent and selective antagonists of P 2 receptors remains a challenge. Among nucleotide antagonists, a P2Y Y_{1} selective antagonist N^{6}-methyl-2'-deoxyadenosine- $3^{\prime}, 5^{\prime}$-bisphosphate (MRS 2179) having a K_{i} value of approximately 100 nM was recently reported [Camaioni et al., 1998; Boyer et al., 1998]. Non-nucleotide heterocyclic P2 receptor antagonists (PPADS, Reactive Blue 2, suramin, etc.) have not shown subtype selectivity before the present study [Jacobson et al., 1997]. In the present study, we have identified several novel derivatives of PPADS, that display encouraging selectivity, including the p-carboxyphenylazo phosphate derivative 10 (MRS 2159) and its m-chloro analog 15 (MRS 2160), which were selective for P2X vs. P2Y 1 receptors. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid, 21 (MRS 2192), showed high potency at $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors with an IC_{50} of $7.23 \mu \mathrm{M}$. The corresponding 2,5disulfonylphenyl derivative 20 (MRS 2191) was nearly inactive at turkey erythrocyte P2Y ${ }_{1}$ receptors, whereas at recombinant $\mathrm{P} 2 \mathrm{X}_{2}$ receptors had an IC_{50} value of $1.1 \mu \mathrm{M}$. Thus a single ring substitution, sulfo instead of chloro, has a major effect on the selectivity of these methylphosphonates as P2Y receptor antagonists. An ethyl phosphonate derivative 23 (MRS 2142) was selective for recombinant $\mathrm{P} 2 \mathrm{X}_{2}$ vs. either $\mathrm{P} 2 \mathrm{X}_{1}$ or turkey erythrocyte $\mathrm{P} 2 \mathrm{Y}_{1}$ receptors.

The present study demonstrates that it is possible to achieve selectivity for P 2 receptor subtypes by using a relatively nonselective lead structure, PPADS. It will be necessary to study the present set of PPADS analogs at other P2 receptor subtypes and compare potencies within the same species to establish the complete pharmacologic profiles as antagonists. PPADS itself does not potently antagonize $\mathrm{P}_{2} \mathrm{Y}_{2}, \mathrm{P}_{2} \mathrm{Y}_{4}$, or $\mathrm{P} 2 \mathrm{Y}_{6}$ receptors. Also, at P 2 X receptors, PPADS is much more potent at $\mathrm{P} 2 \mathrm{X}_{1}-\mathrm{P} 2 \mathrm{X}_{3}$ and $\mathrm{P} 2 \mathrm{X}_{5}$ receptors than at $\mathrm{P} 2 \mathrm{X}_{4}$, $\mathrm{P} 2 \mathrm{X}_{6}$, and $\mathrm{P} 2 \mathrm{X}_{7}$ receptors. Thus, by optimizing the pharmacologic properties of PPADS analogs, it may be possible to achieve high affinity and selectivity for subtypes within P2X and P2Y receptor families.

Acknowledgments

> We thank Gilead Sciences (Foster City, CA) and the Cystic Fibrosis Foundation (Silver Spring, MD) for financial support to E.C. We thank Dr. Lewis Pannell and Wesley White for determination of HRMS and NMR, and Mary Furr for technical assistance.

This work was supported by USPHS grants GM328213 and HL54889.
Grant sponsor: United States Public Health Service; Grant number: GM38213; Grant number: HL54889.

Abbreviations

ATP	adenosine 5^{\prime}-triphosphate
DIBAL-H	diisobutyl aluminum hydride
EFS	electrical field stimulation

HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectroscopy
$\mathbf{K}_{\mathbf{i}}$	equilibrium inhibition constant
me-ATP	adenosine-5'-methylenetriphosphate, (α, β) or (β, γ) isomers
2-MeSATP	2-methylthioadenosine-5'-triphosphate
MRS 2179	λ^{6}-methyl-2'-deoxyadenosine $3^{\prime}, 5$-bisphosphate
MS	mass spectrum
PDC	pyridinium dichromate
PPADS	pyridoxal-5'-phosphate-6-phenylazo-2,4-disulfonate
SAR	structure-activity relationship
THF	tetrahydrofuran

REFERENCES

Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2x and P2y purinoceptors? Pharmacol Ther. 1994; 64:445-475. [PubMed: 7724657]
Boyer JL, Downes CP, Harden TK. Kinetics of activation of phospholipase C by $\mathrm{P}_{2} \mathrm{Y}$ purinergic receptor agonists and guanine nucleotides. J Biol Chem. 1989; 264:884-890. [PubMed: 2910869]
Boyer JL, Zohn IE, Jacobson KA, Harden TK. Differential-effects of P2-purinoceptor antagonists on phospholipase C-coupled and adenylyl cyclase-coupled P2Y-purinoceptors. Br J Pharmacol. 1994; 113:614-620. [PubMed: 7834215]
Boyer JL, Mohanram A, Camaioni E, Jacobson KA, Harden TK. Competitive and selective antagonism of P2Y ${ }_{1}$ receptors by N^{6}-methyl 2^{\prime}-deoxyadenosine $3^{\prime}, 5^{\prime}$-biphosphate. Brit J Pharmacol. 1998; 124:1-3. [PubMed: 9630335]
Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994; 371:519-523. [PubMed: 7523952]
Brown C, Tanna B, Boarder MR. PPADS: an antagonist at endothelial P2Y-purinoceptors but not $\mathrm{P}_{2 \mathrm{U}^{-}}$purinoceptors. Br J Pharmacol. 1995; 116:2413-2416. [PubMed: 8581277]
Buell G, Michel AD, Lewis C, Collo G, Humphrey PPA, Surprenant A. P2X 1_{1} receptor activation in HL-60 cells. Blood. 1996; 87:2659-2664. [PubMed: 8639881]
Bültmann R, Dudeck O, Starke K. Evaluation of P2-purinoceptor antagonists at two relaxationmediating P2-purinoceptors in guinea-pig taenia coli. Naunyn Schmiedebergs Arch Pharmacol. 1996; 353:445-451. [PubMed: 8935712]
Burnstock G. Physiological and pathological roles of purines: an update. Drug Dev Res. 1993; 28:195206.

Burnstock G, Fischer B, Maillard M, Ziganshin A, Ralevic V, Knight G, Brizzolara A, von Isakovics A, Boyer JL, Harden TK, Jacobson KA. Structure activity relationships for derivatives of adeno-sine-5' -triphosphate as agonists at P_{2} purinoceptors: heterogeneity within $\mathrm{P}_{2 \mathrm{X}^{-}}$and $\mathrm{P}_{2 \mathrm{Y}^{-}}$subtypes. Drug Devel Res. 1994; 31:206-219.
Burnstock G. P2 purinoceptors: historical-perspective and classification. Ciba Found Symp. 1996; 198:1-34. [PubMed: 8879816]
Burnstock G, King BF. Numbering of cloned P2 purinoceptors. Drug Dev Res. 1996; 38:67-71.
Burnstock G, Wood JN. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol. 1996; 6:526-532. [PubMed: 8794102]
Camaioni E, Boyer JL, Mohanram A, Harden TK, Jacobson KA. Deoxyadenosine bisphosphate derivatives as potent antagonists at P2 Y_{1} receptors. J Med Chem. 1998; 41:183-190. [PubMed: 9457242]

Communi D, Boeynaems JM. Receptors responsive to extracellular pyrimidine nucleotides. Trends Pharmacol Sci. 1997; 18:83-86. [PubMed: 9133777]
Communi D, Govaerts C, Parmentier M, Boeynaems JM. Cloning of a human purinergic P2Y receptor-coupled to phospholipase C and adenylyl cyclase. J Biol Chem. 1997; 272:31969-31973. [PubMed: 9405388]
Di Virgilio F, Ferrari D, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR. P2 purinoceptors in the immune-system. Ciba Found Symp. 1996; 198:290-305. [PubMed: 8879832]
Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U, Williams M. Toward a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci. 1997; 18:79-82. [PubMed: 9133776]
Gibb AJ, Halliday FC. Fast purinergic transmission in the central-nervous-system. Semin Neurosci. 1996; 8:225-232.
Greco NJ. Functional expression of a P_{2} ADP receptor in Xenopus oocytes injected with megakaryocyte (CMK-11-5) RNA. Arterioscler Thromb Vasc Biol. 1997; 17:769-777. [PubMed: 9108793]
Harden TK, Hawkins PT, Stephens L, Boyer JL, Downes P. Phosphoinositide hydrolysis by guanosine 5^{\prime}-(gamma-thio)-triphosphate-activated phospholipase C of turkey erythrocyte membranes. Biochem J. 1988; 252:583-593. [PubMed: 2843174]
Hourani SMO, Hall DA. P2 ${ }_{T}$ purinoceptors: ADP receptors on platelets. Ciba Found Symp. 1996; 198:53-70. [PubMed: 8879818]
Hullar TL. Pyridoxal phosphate: I. Phosphonic acid analogs of pyridoxal phosphate. Synthesis via Wittig reactions and enzyme evaluation. J Med Chem. 1969; 12:58-63. [PubMed: 4973988]
Humphrey PPA, Buell G, Kennedy I, Khakh BS, Michel AD, Surprenant A, Trezise DJ. New insights on P2X purinoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1995; 352:585-596. [PubMed: 9053729]
Inoue K, Koizumi S, Ueno S. Implication of ATP receptors in brain functions. Prog Neurobiol. 1996; 50:483-492. [PubMed: 9015823]
Inscho EW. Purinoceptor-mediated regulation of the renal microvasculature. J Auton Pharmacol. 1996; 16:385-388. [PubMed: 9131422]
Jacobson, KA.; Kim, YC.; Camaioni, E.; vanRhee, AM. Structure activity relationships of P2 receptor agonists and antagonists. In: Turner, JT.; Gary Weisman, G.; Fedan, J., editors. The receptors: The P2 nucleotide receptors. Humana Press; Clifton, NJ: 1997. p. 81-107.
Jacobson KA, Kim YC, Wildman SS, Mohanram A, Harden TK, Boyer JL, King BF, Burnstock G. A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X 1 receptors. J Med Chem. 1998; 41:2201-2206. [PubMed: 9632352]
King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G. Effects of extracellular pH on agonism and antagonism at a recombinant P2X 2 receptor. Br J Pharmacol. 1997; 121:1445-1453. [PubMed: 9257926]
Lambrecht G, Friebe T, Grimm U, Windscheif U, Bungardt E, Hildebrandt C, Baumert HG, Spatzkumbel G, Mutschler E. PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol. 1992; 217:217-219. [PubMed: 1330591]
Lambrecht, G.; Ardanuy, U.; Baumert, HG.; Bo, X.; Hoyle, CHV.; Nickel, P.; Pfaff, O.; Ralevic, V.; Windschief, U.; Zinashin, AU.; Ziyal, R.; Mutscheler, E.; Burnstock, G. Persp Recept Res. 1996. Design and pharmacological characterization of selective P2-purinoceptor antagonists; p. 337-350.
McLaren GJ, Lambrecht G, Mutschler E, Baumert HG, Sneddon P, Kennedy C. Investigation of the actions of PPADS, a novel of P2X-purinoceptor antagonist, in the guinea-pig isolated vas deferens. Br J Pharmacol. 1994; 111:913-917. [PubMed: 8019769]
North RA, Barnard EA. Nucleotide receptors. Curr Opin Neurobiol. 1997; 7:346-357. [PubMed: 9232809]
Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK. Second messenger cascade specificity and pharmacological selectivity of the human P2Y 1-purinoceptor. Br J Pharmacol. 1996; 118:167173. [PubMed: 8733591]

Rongen GA, Floras JS, Lenders J, Thien T, Smits P. Cardiovascular pharmacology of purines. Clin Sci. 1997; 92:13-24. [PubMed: 9038587]

Thorne PR, Housley GD. Purinergic signaling in sensory systems. Semin Neurosci. 1996; 8:233-246.
Tomita I, Brooks HG, Metzler DE. Synthesis of vitamin B6 derivatives. II. 3-hydroxy-4-hydeoxymethyl-2-methyl-5-pyridine acetic acid and related substances (1). J Heterocycl Chem. 1966; 3:178-183.
Trezise DJ, Bell NJ, Khakh BS, Michel AD, Humphrey PPA. P2 purinoceptor antagonist properties of pyridoxal-5-phosphate. Eur J Pharmacol. 1994; 259:295-300. [PubMed: 7982456]
Williams M. Challenges in developing P2 purinoceptor-based therapeutics. Ciba Found Symp. 1996; 198:309-321. [PubMed: 8879833]
Williams M, Bhagwat SS. P2 purinoceptors: a family of novel therapeutic targets. Annu Rep Med Chem. 1996; 31:21-30.
Windscheif U, Ralevic V, Bäumert HG, Mutschler E, Lambrecht G, Burnstock G. Vasoconstrictor and vasodilator responses to various agonists in the rat perfused mesenteric arterial bed: selectiveinhibition by PPADS of contractions mediated via P2X-purinoceptors. Br J Pharmacol. 1994; 113:1015-1021. [PubMed: 7858843]
Windscheif U, Pfaff O, Ziganshin AU, Hoyle CHV, Bäumert HG, Mutschler E, Burnstock G, Lambrecht G. Inhibitory-action of PPADS on relaxant responses to adenine- nucleotides or electrical-field stimulation in guinea-pig taenia-coli and rat duodenum. Br J Pharmacol. 1995a; 115:1509-1517. [PubMed: 8564212]
Windscheif U, Radziwon P, Breddin HK, Baumert HG, Lambrecht G, Mutschler E. Two different inhibitory effects of pyridoxal-phosphate-6-azophenyl- $2^{\prime}, 4^{\prime}$-disulfonic acid on adenosine diphosphate-induced human platelet aggregation. Arzneim Forsch. 1995b; 2:994-997.
Yang D, Shih Y, Liu H. Chemical synthesis of stereospecifically labeled pyridoxamine 5'-phosphate. J Org Chem. 1991; 56:2940-2946.
Ziganshin AU, Hoyle C, Bo XN, Lambrecht G, Mutschler E, Bäumert HG, Burnstock G. PPADS selectively antagonizes P_{2} X-purinoceptor-mediated responses in the rabbit urinary-bladder. Br J Pharmacol. 1993; 110:1491-1495. [PubMed: 8306091]
Ziganshin AU, Hoyle CHV, Lambrecht G, Mutschler E, Baumert HG, Burnstock G. Selective antagonism by PPADS at P2X-purinoceptors in rabbit isolated blood vessels. Br J Pharmacol. 1994; 111:923-929. [PubMed: 8019770]

$$
\begin{aligned}
\mathrm{X} & =-\mathrm{CH}_{2} \mathrm{O}- & & \text { phosphates } \\
& =-\left(\mathrm{CH}_{2}\right)_{n^{-}}, \mathrm{n}=1-3 & & \text { alkyl phosphonates } \\
& =-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{n^{-}}, \mathrm{n}=0-1 & & \text { alkenyl phosphonates }
\end{aligned}
$$

Fig. 1.
Structure of pyridoxal-6-phenylazo-5'-phosphate or phosphonate derivatives prepared in the present study.

Fig. 2.
$\mathrm{P} 2 \mathrm{X}_{1}$ receptor-mediated contractile responses of control (white bars) and compound 10 (10 $\mu \mathrm{M}$, slash bars; $30 \mu \mathrm{M}$, black bars) calculated as percentage of the response evoked by KCl at a concentration of 240 mM , which was added at the end of experiments. (A) Guinea-pig urinary bladder and (B) guinea-pig vas deferens were stimulated with electrical field stimulation $(0.5-64 \mathrm{~Hz})$ in a Krebs solution containing atropine $(0.3 \mu \mathrm{M})$ and phentolamine $(1 \mu \mathrm{M})$ until a maximal contraction was reached and the tone declined by approximately a third. Intervals of 1 min were always kept between two subsequent stimulations. *, $P<0.05$ from control; ^, $P<0.05$ from $10 \mu \mathrm{M}(\mathrm{n}=3)$.

Fig. 3.
P2 Y_{1} receptor-mediated relaxant responses of control (white bars) and compound 10 (10 $\mu \mathrm{M}$, slash bars; $30 \mu \mathrm{M}$, black bars) calculated as a percentage of maximal relaxation possible: guinea-pig taenia coli relaxant responses to ATP $(1,10$, and $100 \mu \mathrm{M})$ and to electrical field stimulation $(0.5-8 \mathrm{~Hz})$ were tested on carbachol-precontracted tissue (25 $\mathrm{nM})$. Intervals of 10 min were kept between two subsequent precontractions by carbachol for washout.

Fig. 4.
Effects of various analogs as indicated on current induced by activation by $10 \mu \mathrm{M}$ ATP (approximate EC_{70} value) of recombinant rat $\mathrm{P}_{2} \mathrm{X}_{2}$ receptors, expressed in Xenopus oocytes, by using the twin-electrode voltage-clamping technique. The medium consisted of Ca^{2+} Ringer's buffer at pH 7.50 .

Scheme 1.
a: SOCl_{2} in benzene, reflux, 10 min . b: $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$, reflux, 48 h . c: 10% formic acid reflux, 2 h. d: Activated MnO_{2} in $\mathrm{CHCl}_{3}, 2 \mathrm{~h}$. e: TMS-Br in $\mathrm{CH}_{3} \mathrm{CN}, 24 \mathrm{~h}$. f: PDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}$. g: $\mathrm{EtOCOCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$, NaH in THF, 30 min . h: DIBAL-H in THF at $0^{\circ} \mathrm{C}, 2 \mathrm{~h} . \mathbf{i}: 1$ atmosphere $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~h}$.
$\mathrm{Ar}-\mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{H}^{+}} \mathrm{Ar}-\mathrm{N}_{2}{ }^{+}$

$(2,4,7-16,20,21,23-25,27,29,30 \text {, and } 32-34)^{*}$

Scheme 2.

Ar, substituted phenyl or naphthyl. The precise structures are presented in Table 2.
MS and HPLC Characterization of PPADS Analogues Synthesized ${ }^{a}$

${ }^{b}$ Structures are shown in Table 2 and Schemes 1 and 2.

Compound ${ }^{\text {a }}$	(2-18, 20, 21, 23-25, 27, 29,30)				
	${ }^{\prime}$	3^{\prime}	${ }^{\prime \prime}$	5	x
${ }^{4}$	н	so, ${ }^{\text {H }}$	н	${ }^{\text {H }}$	$\mathrm{CH}_{2} \mathrm{O}$
5	н	н	So, ${ }^{\text {S }}$	н	CHO_{2}
${ }_{6}$ (PPADS)	So, ${ }^{\text {H }}$	н	So, ${ }^{\text {H }}$	н	CHO_{2}
7(soperass)	So, ${ }^{\text {H }}$	н	н	sos ${ }^{\text {H }}$	CHzO_{2}

Pharmacologic Activities of Pyridoxal-6-azoaryl-5-phosphate and Phosphonate Derivatives at P2 Receptors (Structures in Table 2 and Schemes 1 and 2)							
	P2 ${ }_{1}$			P2 ${ }_{2}$	P2Y ${ }_{1}$		
Compound	Human HL-60 cells Inhibition of binding $\%$ at $100 \mu \mathrm{M}^{a}$	Guinea pig urinary bladder Inhibition of contraction \% of 30 μM^{b}	Guinea pig vas deferens Inhibition of contraction \% of 30 μM^{b}	Recombinant rat, in oocytes Inhibition of ion flux IC_{50} $(\mu \mathrm{M})^{c}$	Guinea Pig taenia coli Inhibition of relaxation by 2 Hz stim., \% at $30 \mu M^{d}$	Guinea pig taenia coli Inhibition of relaxation by $K_{B}(\mu M)$, or \% at 30 $\mu \mathrm{M}^{d}$	Turkey erythrocyte Inhibition of PLC $\mathbf{I C}_{50}$ $(\mu \mathbf{M})^{e}$
2	55 ± 1		31	1.2 ± 0.2		6.3	22.5
4	25 ± 1	43 ± 20	91 ± 2		63 ± 11	n.a.	20.2 ± 0.5
6	18 ± 1			1.6 ± 0.1			16.6 ± 2.5
7	31 ± 1			0.398 ± 0.129		$1.1-3.7^{h}$	21.4 ± 9.0
8	14 ± 6	57 ± 10	95 ± 1		58 ± 19	$38 \pm 19 \%$	11.8 ± 3.9
9	10 ± 7	36 ± 8	74 ± 13	2.6 ± 0.0	70 ± 3	$43 \pm 27 \%$	25.1 ± 6.3
10	25 ± 6	61 ± 19	87 ± 2	11.9 ± 1.4	n.a.	n.a.	>100
11	16 ± 5	30 ± 11	56 ± 8		41 ± 17	$49 \pm 12 \%$	32.5 ± 7.5
12	52 ± 1	n.a. ${ }^{f}$	86 ± 6		46 ± 8	n.a.	6.94 ± 1.75
13	53 ± 5	71 ± 7	91 ± 3		35 ± 6	$44 \pm 19 \%$	12.7 ± 5.6
14	42 ± 2	51 ± 7	76 ± 4		63 ± 3	n.a.	8.23 ± 1.30
15	11 ± 2	59 ± 14	n.a. ${ }^{g}$	0.819 ± 0.279	n.a.	n.a.	>100
16	64 ± 5	n.a. ${ }^{f}$	85 ± 5		47 ± 9	n.a.	13.8 ± 2.2
19	22 ± 1	34 ± 6	60 ± 12		61 ± 12	$64 \pm 8 \%$	>100
20	43 ± 1	67 ± 3	85 ± 6	1.1 ± 0.0	n.a.	n.a.	>100
21	28 ± 1	n.a.	88 ± 5		n.a.	n.a.	7.23 ± 2.10
22	7 ± 2	22 ± 15	78 ± 11	33.0 ± 11.0		63	n.a.
23	25 ± 3	40 ± 16	84 ± 10	1.5 ± 0.1		12.5	n.a.
24	17 ± 0						13.1 ± 1.2
25		53 ± 18	97 ± 1	2.4 ± 0.3	30 ± 10	n.a.	>100
26	15 ± 1						>100
27	81 ± 1						>100
28	28 ± 1	n.a. ${ }{ }^{\text {a }}$	46 ± 15		n.a.	n.a.	n.a.
29	22 ± 3	n.a.	83 ± 5	10.7 ± 1.0	54 ± 11	$56 \pm 8 \%$	>100

Compound	$\mathrm{P} 2 \mathrm{X}_{1}$			P2 ${ }_{2}$	P2Y ${ }_{1}$		
	Human HL-60 cells Inhibition of binding $\%$ at $100 \mu \mathrm{M}^{a}$	Guinea pig urinary bladder Inhibition of contraction \% of 30 μM^{b}	Guinea pig vas deferens Inhibition of contraction \% of 30 μM^{b}	Recombinant rat, in oocytes Inhibition of ion flux IC_{50} $(\mu \mathrm{M})^{c}$	Guinea Pig taenia coli Inhibition of relaxation by 2 Hz stim., \% at $30 \mu \mathrm{M}^{d}$	Guinea pig taenia coli Inhibition of relaxation by $K_{B}(\mu M)$, or \% at 30 $\mu \mathbf{M}^{d}$	Turkey erythrocyte Inhibition of PLC IC $\mathbf{5 0}_{\mathbf{0}}$ $(\mu \mathbf{M})^{e}$
30	18 ± 1	n.a.	89 ± 3		n.a.	Enhancement ${ }^{i}$	20.2 ± 3.4
31	11 ± 2	n.a.	n.a.		n.a.	n.a.	>100
32	71 ± 2	41 ± 20	86 ± 1		31 ± 20	n.a.	15.6 ± 3.4
33	30 ± 10	34 ± 9	75 ± 13		25 ± 20	Enhancement ${ }^{i}$	14.7 ± 3.2
34	26 ± 1	55 ± 16	80 ± 3		36 ± 13	$75 \pm 4 \%$	9.31 ± 3.64

${ }^{\text {a }}$ Inhibition of specific binding of $\left[{ }^{35} \mathrm{~S}\right]$ ATP $\gamma \mathrm{S}$ (mean \pm s.e.m., $\mathrm{n}=3$). The IC50 values determined for compounds $2,7,27$, and 32 were $45,90,10$, and $15 \mu \mathrm{M}$, respectively.
 $(\mu \mathrm{M})$ of twitch contractions at P 2 X receptors in rabbit isolated vas deferens with 0.5 Hz electrical field stimulation were 1 (34.6), 2 (3.1), 3 (2.6), 5 (3.1), $6(1.4), 17$ (3.97), and $18(5.14)$. n.a., inactive.
${ }^{c}$ Inhibition of ion current (mean \pm s.e.m., $\mathrm{n}=3$) induced by ATP $(10 \mu \mathrm{M})$ at recombinant $\mathrm{P} 2 \mathrm{X}_{2}$ receptors expressed in Xenopus oocytes.
${ }^{e}$ Inhibition of 10 nM 2-MeSADP-stimulated phospholipase C in turkey erythrocyte membranes (mean \pm s.e.m. for $\mathrm{n} \geq 3$), labeled using [${ }^{3} \mathrm{H} \mid \mathrm{inositol}$. n.a., inactive.
$f_{\sim}{ }^{2} 0 \%$ inhibition at $\geq 16 \mathrm{~Hz}$.
$g_{\sim 90 \%}$ inhibition at $\leq 16 \mathrm{~Hz}$.
${ }^{h}$ Apparent K_{d} value $(\mu \mathrm{M})$ in guinea-pig taenia coli against ADP β S [Bültmann et al., 1996].
${ }^{\prime}$ Enhanced relaxation observed upon applicaiton of compounds $30(93.0 \pm 4.2 \%$ vs. $44.3 \pm 11.0 \%$ for $10 \mu \mathrm{M} \mathrm{ATP}$ control) and $33(52.7 \pm 9.2 \%$ vs. $32.7 \pm 13.3 \%$ for $1 \mu \mathrm{M}$ ATP control).

[^0]: © 1998 Wiley-Liss, Inc.
 *Correspondence to: Dr. K. A. Jacobson, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810.
 kajacobs@helix.nih.gov.
 This is a US Government work and, as such, is in the public domain in the United States of America.

