20 research outputs found

    Internal Corrosion Damage Mechanisms of the Underground Water Pipelines

    Get PDF
    Internal water pipe corrosion is a complicated problem due to the interaction of water quality parameters with pipe wall. This study presents investigations of internal pipe surface corrosion mechanisms related to water physicochemical. Samples of water and corrosion-damaged ductile cast iron (30+ years) and galvanized steel pipe (15-20 years) were collected at in-situ condition from Addis Ababa city water distribution system. Scanning electron microscopy and optical microscopy were used to examine the pipes' corrosion morphology and microstructures, respectively. Additionally, Mountains 9 surface analysis software was used for further pitting corrosion characterization.To identify the causes of internal pipe corrosion, water physicochemical analyses were conducted by using inoLab pH 7310P, DR 900, Palintest Photometer 7100, and Miero 800. Water physicochemical test indicates: CaCO3 is 77 - 215 ppm, pH is 7.05 – 7.86, total dissolved solids (TDS) is 84.10 -262.8 ppm, ClO2 is 0 – 0.5 ppm, and dissolved oxygen (80-81 ppb). From water test results, major causes of internal pipe corrosion damage mechanisms were identified as dissolved oxygen, CaCO3, TDS, ClO2,and resistivity of water which initiates a differential cell that accelerates pipe corrosion. Using Mountain 9 surface analysis software, corrosion morphology and pitting features were characterized. The outputs of this paper will be helpful for water distribution and buried infrastructure owners to investigate corrosion damage mechanisms at early stage. To manage corrosion mechanisms, water supply owners need to conduct frequent inspections, recording of pipe data, testing of water quality, periodic pipelines washing, and apply preventative maintenance.publishedVersio

    Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Get PDF
    Immunologically, active visceral leishmaniasis (VL) is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Investigation of Soil Physicochemical Effects on the Corrosion of Buried Iron Pipes

    No full text
    Soil corrosivity was an active problem of water pipeline damaged by corrosion that affects the performance of pipe manufacturers. In Addis ababa, groundwater pipelines were facing breakage and like due to corrosion damage of the pipes. The population of nearly four million were facing a shortage of clean and continuous water supply. Maintenace and replacing old pipes with new ones increased additional cost and delay of water supply for the city. For this investigation of corrosion, causes were conducted which soil property is the one factor. Investigation of soil corrosivity for a given specific location before installation is important to design robust pipes that can serve for long life. Soil physicochemical behaviors of the soil parameters were pH, moisture content, and electrical resistivity for any type of soil. In addition, soil bulk density, total nitrogen, soil texture, and electrical conductivity were also the main factors to be studied. The laboratory result indicated that pH of 6.98-7.04, moisture content of 23.7-37.5%, and electrical conductivity of 0.105-313 ds/m were observed. Total nitrogen was small as 0.06-0.10 for a type of soil were class and loam soils. From the analysis of eight soil samples taken from different cities. The results show that the corrosivity behavior of buried iron pipes in the capital city of Ethiopia was moderately corrosive. As confirmed from various soil samples tested from corroded pipes at different depths of 40, 80, and 120 cm. The influence of soil corrosiveness factors initiates pits formation and propagates its width and depth on the surface of pipes

    Anaerobic digestion process: technological aspects and recent developments

    No full text
    The technology of anaerobic digestion allows the use of biodegradable waste for energy production by breaking down organic matter through a series of biochemical reactions. Such process generates biogas (productivity of 0.45 Nm3/KgSV), which can be used as energy source in industrial activities or as fuel for automotive vehicles. Anaerobic digestion is an economically viable and environmentally friendly process since it makes possible obtaining clean energy at a low cost and without generating greenhouse gases. Searching for clean energy sources has been the target of scientists worldwide, and this technology has excelled on the basis of efficiency in organic matter conversion into biogas (yield in the range of 0.7–2.0 kWh/m3), considered energy carriers for the future. This paper gives an overview of the technology of anaerobic digestion of food waste, describing the metabolism and microorganisms involved in this process, as well as the operational factors that affect it such as temperature, pH, organic loading, moisture, C/N ratio, and co-digestion. The types of reactors that can be used, the methane production, and the most recent developments in this area are also presented and discussed
    corecore