19 research outputs found

    Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo

    Get PDF
    During early mouse development, the TGF beta-related protein Nodal specifies the organizing centers that control the formation of the anterior-posterior (A-P) axis. EGF-CFC proteins are important components of the Nodal signaling pathway, most likely by acting as Nodal coreceptors. However, the extent to which Nodal activity depends on EGF-CFC proteins is still debated. Cripto is the earliest EGF-CFC gene expressed during mouse embryogenesis and is involved in both A-P axis orientation and mesoderm formation. To investigate the relation between Cripto and Nodal in the early mouse embryo, we removed the Nodal antagonist Cerberus 1 (Cer1) and simultaneously Cripto, by generating Cer1;Cripto double mouse mutants. We observed that two thirds of the Cer1,Cripto double mutants are rescued in processes that are severely compromised in Cripto(-/-) embryos, namely A-P axis orientation, anterior mesendoderm and posterior neuroectoderin formation. The observed rescue is strongly reduced in Cer1;Cripto;Nodal triple mutants, suggesting that Nodal can signal extensively in the absence of Cripto, if Cer1 is also inhibited. This signaling activity drives A-P axis positioning. Our results provide evidence for the existence. of Cripto-independent signaling mechanisms, by which Nodal controls axis specification in the early mouse embryo. (C) 2007 Elsevier Inc. All rights reserved

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential

    No full text
    Summary: Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading—known for decades to correlate with implantation potential—and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation

    Controversies and progress on standardization of large-scale brain network nomenclature

    No full text
    Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macro-scale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field towards standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including 1) network scale, resolution, and hierarchies; 2) inter-individual variability of networks; 3) dynamics and non-stationarity of networks; 4) consideration of network affiliations of subcortical structures; and 5) consideration of multi-modal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt

    Controversies and progress on standardization of large-scale brain network nomenclature

    No full text
    Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)–endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt

    WHO Global Situational Alert System: a mixed methods multistage approach to identify country-level COVID-19 alerts

    No full text
    Background Globally, since 1 January 2020 and as of 24 January 2023, there have been over 664 million cases of COVID-19 and over 6.7 million deaths reported to WHO. WHO developed an evidence-based alert system, assessing public health risk on a weekly basis in 237 countries, territories and areas from May 2021 to June 2022. This aimed to facilitate the early identification of situations where healthcare capacity may become overstretched.Methods The process involved a three-stage mixed methods approach. In the first stage, future deaths were predicted from the time series of reported cases and deaths to produce an initial alert level. In the second stage, this alert level was adjusted by incorporating a range of contextual indicators and accounting for the quality of information available using a Bayes classifier. In the third stage, countries with an alert level of ‘High’ or above were added to an operational watchlist and assistance was deployed as needed.Results Since June 2021, the system has supported the release of more than US$27 million from WHO emergency funding, over 450 000 rapid antigen diagnostic testing kits and over 6000 oxygen concentrators. Retrospective evaluation indicated that the first two stages were needed to maximise sensitivity, where 44% (IQR 29%–67%) of weekly watchlist alerts would not have been identified using only reported cases and deaths. The alerts were timely and valid in most cases; however, this could only be assessed on a non-representative sample of countries with hospitalisation data available.Conclusions The system provided a standardised approach to monitor the pandemic at the country level by incorporating all available data on epidemiological analytics and contextual assessments. While this system was developed for COVID-19, a similar system could be used for future outbreaks and emergencies, with necessary adjustments to parameters and indicators

    Effects of race and ethnicity on perinatal outcomes in high-income and upper-middle-income countries: an individual participant data meta-analysis of 2 198 655 pregnancies

    No full text
    Background: Existing evidence on the effects of race and ethnicity on pregnancy outcomes is restricted to individual studies done within specific countries and health systems. We aimed to assess the impact of race and ethnicity on perinatal outcomes in high-income and upper-middle-income countries, and to ascertain whether the magnitude of disparities, if any, varied across geographical regions. Methods: For this individual participant data (IPD) meta-analysis we used data from the International Prediction of Pregnancy Complications (IPPIC) Network of studies on pregnancy complications; the full dataset comprised 94 studies, 53 countries, and 4 539 640 pregnancies. We included studies that reported perinatal outcomes (neonatal death, stillbirth, preterm birth, and small-for-gestational-age babies) in at least two racial or ethnic groups (White, Black, south Asian, Hispanic, or other). For our two-step random-effects IPD meta-analysis, we did multiple imputations for confounder variables (maternal age, BMI, parity, and level of maternal education) selected with a directed acyclic graph. The primary outcomes were neonatal mortality and stillbirth. Secondary outcomes were preterm birth and a small-for-gestational-age baby. We estimated the association of race and ethnicity with perinatal outcomes using a multivariate logistic regression model and reported this association with odds ratios (ORs) and 95% CIs. We also did a subgroup analysis of studies by geographical region. Findings: 51 studies from 20 high-income and upper-middle-income countries, comprising 2 198 655 pregnancies, were eligible for inclusion in this IPD meta-analysis. Neonatal death was twice as likely in babies born to Black women than in babies born to White women (OR 2·00, 95% CI 1·44-2·78), as was stillbirth (2·16, 1·46-3·19), and babies born to Black women were at increased risk of preterm birth (1·65, 1·46-1·88) and being small for gestational age (1·39, 1·13-1·72). Babies of women categorised as Hispanic had a three-times increased risk of neonatal death (OR 3·34, 95% CI 2·77-4·02) than did those born to White women, and those born to south Asian women were at increased risk of preterm birth (OR 1·26, 95% CI 1·07-1·48) and being small for gestational age (1·61, 1·32-1·95). The effects of race and ethnicity on preterm birth and small-for-gestational-age babies did not vary across regions. Interpretation: Globally, among underserved groups, babies born to Black women had consistently poorer perinatal outcomes than White women after adjusting for maternal characteristics, although the risks varied for other groups. The effects of race and ethnicity on adverse perinatal outcomes did not vary by region. Funding: National Institute for Health and Care Research, Wellbeing of Women

    Unravelling the Neural Basis of Spatial Delusions After Stroke

    No full text
    International audienc
    corecore