431 research outputs found

    Southern Ocean Control of 2°C Global Warming in Climate Models

    Get PDF
    Global warming will soon reach the Paris Agreement targets of 1.5°C/2°C temperature increase above pre-industrial levels. Under a business-as-usual scenario, the time to reach these targets varies widely among climate models. Using Coupled Model Intercomparison Project Phase 5 and 6, we show that a 2°C global warming is determined by Southern Ocean (SO) state closely tied with a low-level cloud (LLC) amount feedback strength during reference (1861–1900) period; climate models with cold SO tend to accompany more low-level cloudiness and Antarctic sea ice concentration due to a strong LLC amount feedback. Consequently, initially cold SO models tend to simulate a fast global warming by absorbing more downward shortwave radiation compared to initially warm SO models because more LLC disappears due to a strong LLC amount feedback during the 2°C rise. Our results demonstrate that climate models that correctly simulate initial SO state can improve 2°C warming projections with reduced uncertainties.publishedVersio

    Association of MRI T1 relaxation time with neuropsychological test performance in manganese- exposed welders

    Get PDF
    This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m3. Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times

    Studies of the electric dipole transitions of deformed rare-earth nuclei

    Get PDF
    Spectrum and electric dipole transition rates and relative intensities in 152−154^{152-154}Sm, 156−160^{156-160}Gd, 160−162^{160-162}Dy are studied in the framework of the interacting boson model with s,p,d,f bosons. It is found that E1 transition data among the low-lying levels are in good agreement with the SU(3) dynamical symmetry of the spdf interacting boson model proposed by Engel and Iachello to describe collective rotation with octupole vibration. These results show that these nuclei have SU(3) dynamic symmetry to a good approximation. Also in this work many algebraic expressions for electric dipole transitions in the SU(3) limit of the spdf-IBM have been obtained. These formulae together with the formulae given previously exhaust nearly all the E1 transitions for low-lying negative parity states. They are useful in analyzing experimental data.Comment: 26 pages, 1 figur

    Dynamic Scaling and Two-Dimensional High-Tc Superconductors

    Full text link
    There has been ongoing debate over the critical behavior of two-dimensional superconductors; in particular for high Tc superconductors. The conventional view is that a Kosterlitz-Thouless-Berezinskii transition occurs as long as finite size effects do not obscure the transition. However, there have been recent suggestions that a different transition actually occurs which incorporates aspects of both the dynamic scaling theory of Fisher, Fisher, and Huse and the Kosterlitz-Thouless-Berezinskii transition. Of general interest is that this modified transition apparently has a universal dynamic critical exponent. Some have countered that this apparent universal behavior is rooted in a newly proposed finite-size scaling theory; one that also incorporates scaling and conventional two-dimensional theory. To investigate these issues we study DC voltage versus current data of a 12 angstrom thick YBCO film. We find that the newly proposed scaling theories have intrinsic flexibility that is relevant to the analysis of the experiments. In particular, the data scale according to the modified transition for arbitrarily defined critical temperatures between 0 K and 19.5 K, and the temperature range of a successful scaling collapse is related directly to the sensitivity of the measurement. This implies that the apparent universal exponent is due to the intrinsic flexibility rather than some real physical property. To address this intrinsic flexibility, we propose a criterion which would give conclusive evidence for phase transitions in two-dimensional superconductors. We conclude by reviewing results to see if our criterion is satisfied.Comment: 14 page

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri∗=0.14T^*_{tri}=0.14 and ρtri∗=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR

    Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials

    Get PDF
    Objective: Interobserver agreement in the context of oral epithelial dysplasia (OED) grading has been notoriously unreliable and can impose barriers for developing new molecular markers and diagnostic technologies. This paper aimed to report the details of a 3-stage histopathology review and adjudication process with the goal of achieving a consensus histopathologic diagnosis of each biopsy. Study Design: Two adjacent serial histologic sections of oral lesions from 846 patients were independently scored by 2 different pathologists from a pool of 4. In instances where the original 2 pathologists disagreed, a third, independent adjudicating pathologist conducted a review of both sections. If a majority agreement was not achieved, the third stage involved a face-to-face consensus review. Results: Individual pathologist pair Îș values ranged from 0.251 to 0.706 (fair-good) before the 3-stage review process. During the initial review phase, the 2 pathologists agreed on a diagnosis for 69.9% of the cases. After the adjudication review by a third pathologist, an additional 22.8% of cases were given a consensus diagnosis (agreement of 2 out of 3 pathologists). After the face-to-face review, the remaining 7.3% of cases had a consensus diagnosis. Conclusions: The use of the defined protocol resulted in a substantial increase (30%) in diagnostic agreement and has the potential to improve the level of agreement for establishing gold standards for studies based on histopathologic diagnosis

    ‘Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions

    Get PDF
    Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective. Objective To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy. Materials and methods Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new ‘cytology-on-a-chip’ approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects. Results Binary “low-risk”/“high-risk” models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity + specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area. Conclusions This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the ∌100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π−\pi^- and Ό−\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change
    • 

    corecore