31 research outputs found

    Local ciliate communities associated with aquatic macrophytes

    Get PDF
    This study, based within the catchment area of the River Frome, an important chalk stream in the south of England, compared ciliated protozoan communities associated with three species of aquatic macrophyte common to lotic habitats: Ranunculus penicillatus subsp. pseudofluitans, Nasturtium officinale and Sparganium emersum. A total of 77 ciliate species were counted. No species-specific ciliate assemblage was found to be typical of any one plant species. Ciliate abundance between plant species was determined to be significantly different. The ciliate communities from each plant species were unique in that the number of species increased with ciliate abundance. The community associated with R. penicillatus subsp. pseudofluitans showed the highest consistency and species richness whereas S. emersum ciliate communities were unstable. Most notably, N. officinale was associated with low ciliate abundances and an apparent reduction in biofilm formation, discussed herein in relation to the plant’s production of the microbial toxin phenethyl isothiocyanate. We propose that the results reflect differences in the quantity and quality of biofilm present on the plants, which could be determined by the different plant morphologies, patterns of plant decay and herbivore defense systems, all of which suppress or promote the various conditions for biofilm growth. [Int Microbiol 2014; 17(1):31-40]Keywords: Ranunculus · Nasturtium · toxin phenethyl isothiocyanate (PEITC) · biofilms · macrophytes · ciliates · microbial biodiversit

    The physiology of alien chloroplasts: light adaptation mechanisms in cytoplasmic hybrids of the Solanaceae family.

    Get PDF
    PhDThe investigation presented here is of a new plant model for photosynthesis research. The plant's novelty is a hybrid cytoplasm which was engineered to contain the nuclear genome of Nicotiana tabacum (tobacco) and the chloroplast genome of Hyoscyamus niger (henbane). For photosynthesis research the implications of cytoplasmic hybridisation centre on the nuclear and chloroplast encoded pigment protein complexes of the photosynthetic machinery in the thylakoid membrane of the chloroplast. We investigate how the energy input from nuclear-encoded light harvesting complexes to the chloroplast-encoded core complexes is regulated in the cybrid plants, when light limits or exceeds photochemical capacity. When light limited, the phenomenon of state transitions (ST) serves to redress the imbalance of light input at PSI and PSII. In excess light, non-photochemical quenching (NPQ) mechanisms are activated in order to safely dissipate potentially harmful energy that has been absorbed by the system. Our investigation at first indicated that the cybrid plants had a greater capacity for NPQ compared to wildtype N. tabacum and H. niger. LHCII aggregation, xanthopyll cycle activity and PsbS were investigated for a possible reasons for the increase. However no difference or contradictory evidence was found. NPQ measurements were repeated and showed large variability and no significant difference in NPQ capacity compared to the wildtype parent species. The reason for the variability in the cybrid results could not be resolved but is suggested to be due to heightened environmental sensitivity. STs were found to be consistently inhibited in cybrids. Investigation of cybrid LHC isoelectric points and molecular weight revealed novelties. LHCs were then subjected to proteomic analysis that indicated possible truncation at the N-terminus, and thus the possible removal of a phosphorylation site that crucial for the initiation of ST. We also investigate the ability of the Nt(Hn) cybrid to adjust to high and low intensity light environments in terms of acclimation at the level of the whole plant, leaf, tissue, cell, chloroplast, thylakoid membrane, pigment, and electron transport rates.BBSR

    Absence of photosynthetic state transitions in alien chloroplasts

    Get PDF
    MAIN CONCLUSION:The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants

    Predictors of Long-Term Victimization After Early Pediatric Traumatic Brain Injury

    Get PDF
    Pediatric traumatic brain injuries (TBIs) adversely affect long-term functional and social outcomes. Limited research suggests children with TBI are more likely to be victimized by peers than noninjured children. Deficits in social information processing (SIP), cognitive ability, and executive functioning (EF) may contribute to increased victimization risk. This study examined rates of peer victimization/bullying in children with early TBI compared with children with orthopedic injuries (OIs) and the role of processing speed, executive function (EF), and SIP as mediators of the association of TBI and peer victimization

    Associations between maternal thyroid function in pregnancy and child neurodevelopmental outcomes at 20 months in the Seychelles Child Development Study, Nutrition Cohort 2 (SCDS NC2)

    Get PDF
    Maternal thyroid hormones facilitate optimal foetal neurodevelopment; however, the exact role of the thyroid hormones on specific cognitive outcomes is unknown. The present study aimed to investigate associations between maternal thyroid function and neurodevelopmental outcomes in the Seychelles Child Development Study (SCDS) Nutrition 2 cohort (n 1328). Maternal free thyroid hormones (fT3, fT4 and fTSH) were assessed at 28 weeks’ gestation with a range of child cognitive outcomes analysed at 20 months. Dietary iodine intake was analysed for a subset of women through a Food Frequency Questionnaire. Linear regression analysis was used to test associations between serum concentrations of maternal thyroid hormones and child neurodevelopment outcomes. Thyroid hormones were analysed as continuous data and categorised as quintiles. 95% of mothers had optimal thyroid function based on fTSH concentrations. Overall, the present study shows that maternal thyroid function is not associated with neurodevelopmental outcomes in this high fish-eating population. However, a positive association, using quintiles for fT3, was reported for the Mental Developmental Index, between Q3 v. Q4 (β 0⋅073; P 0⋅043) and for Q3 v. Q5 (β value 0⋅086; P 0⋅018). To conclude, mothers in our cohort, who largely have optimal thyroid function and iodine intakes, appear able to regulate thyroid function throughout pregnancy to meet neurodevelopmental needs. However, it is possible that minor imbalances of fT3, as indicated from our secondary analysis, may impact offspring neurodevelopment. Further investigation of the relationship between maternal thyroid function and infant neurodevelopment is warranted, particularly in populations with different dietary patterns and thereby iodine intakes

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle

    Get PDF
    International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein–Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein–Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics

    Probability of major depression diagnostic classification using semi-structured vs. fully structured diagnostic interviews

    Get PDF
    Background: Different diagnostic interviews are used as reference standards for major depression classification in research. Semi-structured interviews involve clinical judgement, whereas fully structured interviews are completely scripted. The Mini International Neuropsychiatric Interview (MINI), a brief fully structured interview, is also sometimes used. It is not known whether interview method is associated with probability of major depression classification. Aims: To evaluate the association between interview method and odds of major depression classification, controlling for depressive symptom scores and participant characteristics. Method: Data collected for an individual participant data meta-analysis of Patient Health Questionnaire-9 (PHQ-9) diagnostic accuracy were analyzed. Binomial Generalized Linear Mixed Models were fit. Results: 17,158 participants (2,287 major depression cases) from 57 primary studies were analyzed. Among fully structured interviews, odds of major depression were higher for the MINI compared to the Composite International Diagnostic Interview (CIDI) [OR (95% CI) = 2.10 (1.15-3.87)]. Compared to semi-structured interviews, fully structured interviews (MINI excluded) were non-significantly more likely to classify participants with low-level depressive symptoms (PHQ-9 scores 6) as having major depression [OR (95% CI) = 3.13 (0.98-10.00)], similarly likely for moderate-level symptoms (PHQ-9 scores 7-15) [OR (95% CI) = 0.96 (0.56-1.66)], and significantly less likely for high-level symptoms (PHQ-9 scores 16) [OR (95% CI) = 0.50 (0.26-0.97)]. Conclusions: The MINI may identify more depressed cases than the CIDI, and semi- and fully structured interviews may not be interchangeable methods, but these results should be replicated
    corecore