115 research outputs found

    Classification and Management of Upland, Riparian, and Wetland Sites of USDI Bureau of Land Management’s Miles City Field Office, Eastern Montana USA

    Get PDF
    A system is presented for the classification and management of uplands, riparian, and wetland sites within the USDI Bureau of Land Management’s Miles City Field Office in eastern Montana. The Miles City Field of the USDI Bureau of Land Management lies within the northern Great Plains and occupies approximately the eastern 1/3 of Montana. The concepts and terminology used in this document are consistent with usage proposed by Daubenmire (1952, 1968, 1978), and are used in numerous other vegetation-based ecological site classifications for North America. A dichotomous key utilizing indicator plant species is provided for field identification of the habitat types and major seral plant communities (for example community types) that are stable for time frames relevant to land management decisions. The habitat types (for example ecological site types) are identified first in the key. If this is not possible, the key then identifies the major seral community types. Within the description of each community type is a discussion of possible habitat types for the site. Each “type” includes detailed information for managing a particular site. The work utilized 1,126 sample plots resulting in a total of 96 different plant communities identified to either the habitat type (and phase) or community type level. There were 62 identified riparian/wetland types and 28 upland types. In addition, six types are types that can occur in both riparian/wetland and upland situations. There were a total of 663 unique species recorded for the 1,126 sampled stands. Of the 663 species, 551 (83 percent) were native, and 112 (17 percent) were introduced or contain an introduced element. The document can be downloaded from www.ecologicalsolutionsgroup.com

    Challenges and Prospects in Ocean Circulation Models

    Get PDF
    We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.Peer reviewe

    PADB : Published Association Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although molecular pathway information and the International HapMap Project data can help biomedical researchers to investigate the aetiology of complex diseases more effectively, such information is missing or insufficient in current genetic association databases. In addition, only a few of the environmental risk factors are included as gene-environment interactions, and the risk measures of associations are not indexed in any association databases.</p> <p>Description</p> <p>We have developed a published association database (PADB; <url>http://www.medclue.com/padb</url>) that includes both the genetic associations and the environmental risk factors available in PubMed database. Each genetic risk factor is linked to a molecular pathway database and the HapMap database through human gene symbols identified in the abstracts. And the risk measures such as odds ratios or hazard ratios are extracted automatically from the abstracts when available. Thus, users can review the association data sorted by the risk measures, and genetic associations can be grouped by human genes or molecular pathways. The search results can also be saved to tab-delimited text files for further sorting or analysis. Currently, PADB indexes more than 1,500,000 PubMed abstracts that include 3442 human genes, 461 molecular pathways and about 190,000 risk measures ranging from 0.00001 to 4878.9.</p> <p>Conclusion</p> <p>PADB is a unique online database of published associations that will serve as a novel and powerful resource for reviewing and interpreting huge association data of complex human diseases.</p

    The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models

    Get PDF
    We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years

    Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies (GWAS) aim to identify genetic variants (usually single nucleotide polymorphisms [SNPs]) across the entire human genome that are associated with phenotypic traits such as disease status and drug response. Highly accurate and reproducible genotype calling are paramount since errors introduced by calling algorithms can lead to inflation of false associations between genotype and phenotype. Most genotype calling algorithms currently used for GWAS are based on multiple arrays. Because hundreds of gigabytes (GB) of raw data are generated from a GWAS, the samples are typically partitioned into batches containing subsets of the entire dataset for genotype calling. High call rates and accuracies have been achieved. However, the effects of batch size (i.e., number of chips analyzed together) and of batch composition (i.e., the choice of chips in a batch) on call rate and accuracy as well as the propagation of the effects into significantly associated SNPs identified have not been investigated. In this paper, we analyzed both the batch size and batch composition for effects on the genotype calling algorithm BRLMM using raw data of 270 HapMap samples analyzed with the Affymetrix Human Mapping 500 K array set.</p> <p>Results</p> <p>Using data from 270 HapMap samples interrogated with the Affymetrix Human Mapping 500 K array set, three different batch sizes and three different batch compositions were used for genotyping using the BRLMM algorithm. Comparative analysis of the calling results and the corresponding lists of significant SNPs identified through association analysis revealed that both batch size and composition affected genotype calling results and significantly associated SNPs. Batch size and batch composition effects were more severe on samples and SNPs with lower call rates than ones with higher call rates, and on heterozygous genotype calls compared to homozygous genotype calls.</p> <p>Conclusion</p> <p>Batch size and composition affect the genotype calling results in GWAS using BRLMM. The larger the differences in batch sizes, the larger the effect. The more homogenous the samples in the batches, the more consistent the genotype calls. The inconsistency propagates to the lists of significantly associated SNPs identified in downstream association analysis. Thus, uniform and large batch sizes should be used to make genotype calls for GWAS. In addition, samples of high homogeneity should be placed into the same batch.</p

    Comprehensive Evaluation of One-Carbon Metabolism Pathway Gene Variants and Renal Cell Cancer Risk

    Get PDF
    Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.Tag single nucleotide polymorphisms (SNPs) selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS) and the closely associated glutathione synthesis pathway (CTH, GGH, GSS) were genotyped for 777 renal cell carcinoma (RCC) cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163) with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P) tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.The strongest associations with RCC risk were observed for SLC19A1 (P(min-P) = 0.03) and MTHFR (P(min-P) = 0.13). A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785) was associated with a 37% increased risk (p = 0.02), and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings

    Predicting the seasonal evolution of southern African summer precipitation in the DePreSys3 prediction system

    Get PDF
    We assess the ability of the DePreSys3 prediction system to predict austral summer precipitation (DJF) over southern Africa, defined as the African continent south of 15°S. DePresys3 is a high resolution prediction system (at a horizontal resolution of ~ 60 km in the atmosphere in mid-latitudes and of the quarter degree in the Ocean) and spans the long period 1959–2016. We find skill in predicting interannual precipitation variability, relative to a long-term trend; the anomaly correlation skill score over southern Africa is greater than 0.45 for the first summer (i.e. lead month 2–4), and 0.37 over Mozambique, Zimbabwe and Zambia for the second summer (i.e. lead month 14–16). The skill is related to the successful prediction of the El-Nino Southern Oscillation (ENSO), and the successful simulation of ENSO teleconnections to southern Africa. However, overall skill is sensitive to the inclusion of strong La-Nina events and also appears to change with forecast epoch. For example, the skill in predicting precipitation over Mozambique is significantly larger for the first summer in the 1990–2016 period, compared to the 1959–1985 period. The difference in skill in predicting interannual precipitation variability over southern Africa in different epochs is consistent with a change in the strength of the observed teleconnections of ENSO. After 1990, and consistent with the increased skill, the observed impact of ENSO appears to strengthen over west Mozambique, in association with changes in ENSO related atmospheric convergence anomalies. However, these apparent changes in teleconnections are not captured by the ensemble-mean predictions using DePreSys3. The changes in the ENSO teleconnection are consistent with a warming over the Indian Ocean and modulation of ENSO properties between the different epochs, but may also be associated with unpredictable atmospheric variability

    Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples

    Get PDF
    The discordance in results of independent genome-wide association studies (GWAS) indicates the potential for Type I and Type II errors. We assessed the repeatibility of current Affymetrix technologies that support GWAS. Reasonable reproducibility was observed for both raw intensity and the genotypes/copy number variants. We also assessed consistencies between different SNP arrays and between genotype calling algorithms. We observed that the inconsistency in genotypes was generally small at the specimen level. To further examine whether the differences from genotyping and genotype calling are possible sources of variation in GWAS results, an association analysis was applied to compare the associated SNPs. We observed that the inconsistency in genotypes not only propagated to the association analysis, but was amplified in the associated SNPs. Our studies show that inconsistencies between SNP arrays and between genotype calling algorithms are potential sources for the lack of reproducibility in GWAS results
    corecore