3,449 research outputs found

    Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To establish our institutional guideline for IMRT delivery, we statistically evaluated the results of dosimetry quality assurance (DQA) measurements and derived local confidence limits using the concept confidence limit of |mean|+1.96σ.</p> <p>Materials and methods</p> <p>From June 2006 to March 2009, 206 patients with head and neck cancer, prostate cancer, liver cancer, or brain tumor were treated using LINAC-based IMRT technique. In order to determine site specific DQA tolerances at a later stage, a hybrid plan with the same fluence maps as in the treatment plan was generated on CT images of a cylindrical phantom of acryl. Points of measurement using a 0.125 cm<sup>3 </sup>ion-chamber were typically located in the region of high and uniform doses. The planar dose distributions perpendicular to the central axis were measured by using a diode array in solid water with all fields delivered, and assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop the local confidence and tolerance limits. The dose differences and gamma pass rates for the different treatment sites were also evaluated in terms of total monitor uints (MU), MU/cGy, and the number of PTV's pieces.</p> <p>Results</p> <p>The mean values and standard deviations of ion-chamber dosimetry differences between calculated and measured doses were -1.6 ± 1.2% for H&N cancer, -0.4 ± 1.2% for prostate and abdominal cancer, and -0.6 ± 1.5% for brain tumor. Most of measured doses (92.2%) agreed with the calculated doses within a tolerance limit of ±3% recommended in the literature. However, we found some systematic under-dosage for all treatment sites. The percentage of points passing the gamma criteria, averaged over all treatment sites was 97.3 ± 3.7%. The gamma pass rate and the agreement of ion-chamber dosimetry generally decreased with increasing the number of PTV's pieces, the degree of modulation (MU/cGy), and the total MU beyond 700. Our local confidence limits were comparable to those of AAPM TG 119 and ESTRO guidelines that were provided as a practical baseline for center-to-center commissioning comparison. Thus, our institutional confidence and action limits for IMRT delivery were set into the same levels of those guidelines.</p> <p>Discussion and Conclusions</p> <p>The systematic under-dosage were corrected by tuning up the MLC-related factors (dosimetric gap and transmission) in treatment planning system (TPS) and further by incorporating the tongue-and groove effect into TPS. Institutions that have performed IMRT DQA measurements over a certain period of time need to analyze their accrued DQA data. We confirmed the overall integrity of our IMRT system and established the IMRT delivery guideline during this procedure. Dosimetric corrections for the treatment plans outside of the action level can be suggested only with such rigorous DQA and statistical analysis.</p

    Fluorescent nanoparticles for sensing

    Full text link
    Nanoparticle-based fluorescent sensors have emerged as a competitive alternative to small molecule sensors, due to their excellent fluorescence-based sensing capabilities. The tailorability of design, architecture, and photophysical properties has attracted the attention of many research groups, resulting in numerous reports related to novel nanosensors applied in sensing a vast variety of biological analytes. Although semiconducting quantum dots have been the best-known representative of fluorescent nanoparticles for a long time, the increasing popularity of new classes of organic nanoparticle-based sensors, such as carbon dots and polymeric nanoparticles, is due to their biocompatibility, ease of synthesis, and biofunctionalization capabilities. For instance, fluorescent gold and silver nanoclusters have emerged as a less cytotoxic replacement for semiconducting quantum dot sensors. This chapter provides an overview of recent developments in nanoparticle-based sensors for chemical and biological sensing and includes a discussion on unique properties of nanoparticles of different composition, along with their basic mechanism of fluorescence, route of synthesis, and their advantages and limitations

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Music-aided affective interaction between human and service robot

    Get PDF
    This study proposes a music-aided framework for affective interaction of service robots with humans. The framework consists of three systems, respectively, for perception, memory, and expression on the basis of the human brain mechanism. We propose a novel approach to identify human emotions in the perception system. The conventional approaches use speech and facial expressions as representative bimodal indicators for emotion recognition. But, our approach uses the mood of music as a supplementary indicator to more correctly determine emotions along with speech and facial expressions. For multimodal emotion recognition, we propose an effective decision criterion using records of bimodal recognition results relevant to the musical mood. The memory and expression systems also utilize musical data to provide natural and affective reactions to human emotions. For evaluation of our approach, we simulated the proposed human-robot interaction with a service robot, iRobiQ. Our perception system exhibited superior performance over the conventional approach, and most human participants noted favorable reactions toward the music-aided affective interaction.open0

    Fabrication and Properties of Porphyrin Nano- and Micro-particles with Novel Morphology

    Get PDF
    New types of porphyrin nano- and micro-particles composed of J- and H-heteroaggregates were prepared by electrostatic self-assembly of two oppositely charged porphyrins, tetrakis(4-trimethylammoniophenyl)porphyrin (H2TAPP4+) and tetrakis(4-sulfonatophenyl)porphyrin cobalt(II) (CoTPPS4−), in aqueous solutions. Transmission electron microscopy (TEM) images showed novel morphology and size distribution of porphyrin particles fabricated under different experimental conditions. The assembly process of the nano- and micro-particles was monitored by UV–Vis spectra. Fluorescence spectra and UV–Vis spectra provided optical information on the formation of the nano- and micro-particles. Cyclic voltammograms of the porphyrin particles indicated that the electron gain and loss of the H2TAPP4+ion were restrained, and the electron transfer of the CoTPPS4−ion was promoted in the J- and H-type porphyrin heteroaggregates within the particles. The stability and constitution of the nano- and micro-particles were confirmed by UV-light irradiation, heat-treatment, and pH and ionic strength changes. Photoelectrochemical measurements showed that the photoelectron transfer of TiO2modified with the particles was more efficient than that of TiO2sensitized by either monomers. The photoelectronic and photocatalytic properties of the products indicated that the pyramidal or spherical configuration of the nano- and micro-particles was favorable for the absorption and transfer of the energy. It can be found that TiO2sensitized by the porphyrin nano- and micro-particles exhibits significant improvement in energy conversion and photocatalytic activity with reference to pure TiO2

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore