6,845 research outputs found
A self-adapting latency/power tradeoff model for replicated search engines
For many search settings, distributed/replicated search engines deploy a large number of machines to ensure efficient retrieval. This paper investigates how the power consumption of a replicated search engine can be automatically reduced when the system has low contention, without compromising its efficiency. We propose a novel self-adapting model to analyse the trade-off between latency and power consumption for distributed search engines. When query volumes are high and there is contention for the resources, the model automatically increases the necessary number of active machines in the system to maintain acceptable query response times. On the other hand, when the load of the system is low and the queries can be served easily, the model is able to reduce the number of active machines, leading to power savings. The model bases its decisions on examining the current and historical query loads of the search engine. Our proposal is formulated as a general dynamic decision problem, which can be quickly solved by dynamic programming in response to changing query loads. Thorough experiments are conducted to validate the usefulness of the proposed adaptive model using historical Web search traffic submitted to a commercial search engine. Our results show that our proposed self-adapting model can achieve an energy saving of 33% while only degrading mean query completion time by 10 ms compared to a baseline that provisions replicas based on a previous day's traffic
The formation of silver /I/ chloride by the action of silver /I/ ion on carbon tetrachloride in 2-butanol and methanol
Formation of silver chloride by action of silver ion on carbon tetrachloride in 2-butanol and methano
Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation
The intrinsic anomalous Hall effect in ferromagnets depends on subtle
spin-orbit-induced effects in the electronic structure, and recent ab-initio
studies found that it was necessary to sample the Brillouin zone at millions of
k-points to converge the calculation. We present an efficient first-principles
approach for computing the anomalous Hall conductivity. We start out by
performing a conventional electronic-structure calculation including spin-orbit
coupling on a uniform and relatively coarse k-point mesh. From the resulting
Bloch states, maximally-localized Wannier functions are constructed which
reproduce the ab-initio states up to the Fermi level. The Hamiltonian and
position-operator matrix elements, needed to represent the energy bands and
Berry curvatures, are then set up between the Wannier orbitals. This completes
the first stage of the calculation, whereby the low-energy ab-initio problem is
transformed into an effective tight-binding form. The second stage only
involves Fourier transforms and unitary transformations of the small matrices
set up in the first stage. With these inexpensive operations, the quantities of
interest are interpolated onto a dense k-point mesh and used to evaluate the
anomalous Hall conductivity as a Brillouin zone integral. The present scheme,
which also avoids the cumbersome summation over all unoccupied states in the
Kubo formula, is applied to bcc Fe, giving excellent agreement with
conventional, less efficient first-principles calculations. Remarkably, we find
that more than 99% of the effect can be recovered by keeping a set of terms
depending only on the Hamiltonian matrix elements, not on matrix elements of
the position operator.Comment: 16 pages, 7 figure
Recommended from our members
Local economic governance strategies in the UK’s post-industrial cities and the challenges of improving local work and employment conditions
This study examines two inter-connected issues: the local economic governance strategies pursued by English local authorities in the post-2007 Crisis austerity period, and the impact of these strategies on local work and employment conditions. The study draws on interview data, policy documents and statistical datasets from an analysis of two English localities to understand how local authorities responded to the economic pressures resulting from the 2007 Crisis and subsequent imposition of austerity policies. The study finds local authorities engaged in various forms of entrepreneurial and austerity urbanist policies under conditions of tight budgetary constraints, resulting in an increased role for the private sector as a vehicle to generate jobs and increase tax revenue. This process has increased the influence of private sector actors within local government, part of a longer term trend. This study presents evidence to illustrate why this scenario is problematic for improving work and employment conditions, chiefly due to an unwillingness to progressively regulate work, and a prioritising of job quantity in terms of total employment, rather than favouring the creation of sustainable, high-quality local employment
Should applicants to Nottingham University Medical School study a non-science A-level? A cohort study
<p>Abstract</p> <p>Background</p> <p>It has been suggested that studying non-science subjects at A-level should be compulsory for medical students. Our admissions criteria specify only Biology, Chemistry and one or more additional subjects. This study aimed to determine whether studying a non-science subject for A-level is an independent predictor of achievement on the undergraduate medical course.</p> <p>Methods</p> <p>The subjects of this retrospective cohort study were 164 students from one entry-year group (October 2000), who progressed normally on the 5-year undergraduate medical course at Nottingham. Pre-admission academic and socio-demographic data and undergraduate course marks were obtained. T-test and hierarchical multiple linear regression analyses were undertaken to identify independent predictors of five course outcomes at different stages throughout the course.</p> <p>Results</p> <p>There was no evidence that the choice of science or non-science as the third or fourth A-level subject had any influence on course performance. Demographic variables (age group, sex, and fee status) had some predictive value but ethnicity did not. Pre-clinical course performance was the strongest predictor in the clinical phases (pre-clinical Themes A&B (knowledge) predicted Clinical Knowledge, p < 0.001, and pre-clinical Themes C&D (skills) predicted Clinical Skills, p = < 0.01).</p> <p>Conclusion</p> <p>This study of one year group at Nottingham Medical School provided no evidence that the admissions policy on A-level requirements should specify the choice of third or fourth subject.</p
Multiscalar cellular automaton simulates in-vivo tumour-stroma patterns calibrated from in-vitro assay data
Background: The tumour stroma -or tumour microenvironment- is an important constituent of solid cancers and it is thought to be one of the main obstacles to quantitative translation of drug activity between the preclinical and clinical phases of drug development. The tumour-stroma relationship has been described as being both pro- and antitumour in multiple studies. However, the causality of this complex biological relationship between the tumour and stroma has not yet been explored in a quantitative manner in complex tumour morphologies.Methods: To understand how these stromal and microenvironmental factors contribute to tumour physiology and how oxygen distributes within them, we have developed a lattice-based multiscalar cellular automaton model. This model uses principles of cytokine and oxygen diffusion as well as cell motility and plasticity to describe tumour-stroma landscapes. Furthermore, to calibrate the model, we propose an innovative modelling platform to extract model parameters from multiple in-vitro assays. This platform provides a novel way to extract meta-data that can be used to complement in-vivo studies and can be further applied in other contexts.Results: Here we show the necessity of the tumour-stroma opposing relationship for the model simulations to successfully describe the in-vivo stromal patterns of the human lung cancer cell lines Calu3 and Calu6, as models of clinical and preclinical tumour-stromal topologies. This is especially relevant to drugs that target the tumour microenvironment, such as antiangiogenics, compounds targeting the hedgehog pathway or immune checkpoint inhibitors, and is potentially a key platform to understand the mechanistic drivers for these drugs.Conclusion: The tumour-stroma automaton model presented here enables the interpretation of complex in-vitro data and uses it to parametrise a model for in-vivo tumour-stromal relationships
Spectral and Fermi surface properties from Wannier interpolation
We present an efficient first-principles approach for calculating Fermi
surface averages and spectral properties of solids, and use it to compute the
low-field Hall coefficient of several cubic metals and the magnetic circular
dichroism of iron. The first step is to perform a conventional first-principles
calculation and store the low-lying Bloch functions evaluated on a uniform grid
of k-points in the Brillouin zone. We then map those states onto a set of
maximally-localized Wannier functions, and evaluate the matrix elements of the
Hamiltonian and the other needed operators between the Wannier orbitals, thus
setting up an ``exact tight-binding model.'' In this compact representation the
k-space quantities are evaluated inexpensively using a generalized
Slater-Koster interpolation. Because of the strong localization of the Wannier
orbitals in real space, the smoothness and accuracy of the k-space
interpolation increases rapidly with the number of grid points originally used
to construct the Wannier functions. This allows k-space integrals to be
performed with ab-initio accuracy at low cost. In the Wannier representation,
band gradients, effective masses, and other k-derivatives needed for transport
and optical coefficients can be evaluated analytically, producing numerically
stable results even at band crossings and near weak avoided crossings.Comment: 12 pages, 7 figure
Predictive validity of the UK clinical aptitude test in the final years of medical school:a prospective cohort study
Peer reviewedPublisher PD
Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites
Using the newly developed VASP2WANNIER90 interface we have constructed
maximally localized Wannier functions (MLWFs) for the e_g states of the
prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of
approximation for the exchange-correlation kernel. These include conventional
density functional theory (DFT) with and without additional on-site Hubbard U
term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the
MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a
complete set of TB parameters which should serve as guidance for more elaborate
treatments of correlation effects in effective Hamiltonian-based approaches.
The method-dependent changes of the calculated TB parameters and their
interplay with the electron-electron (el-el) interaction term are discussed and
interpreted. We discuss two alternative model parameterizations: one in which
the effects of the el-el interaction are implicitly incorporated in the
otherwise "noninteracting" TB parameters, and a second where we include an
explicit mean-field el-el interaction term in the TB Hamiltonian. Both models
yield a set of tabulated TB parameters which provide the band dispersion in
excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure
- …