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Multiscalar cellular automaton simulates
in-vivo tumour-stroma patterns calibrated
from in-vitro assay data
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Abstract

Background: The tumour stroma -or tumour microenvironment- is an important constituent of solid cancers
and it is thought to be one of the main obstacles to quantitative translation of drug activity between the
preclinical and clinical phases of drug development. The tumour-stroma relationship has been described
as being both pro- and antitumour in multiple studies. However, the causality of this complex biological
relationship between the tumour and stroma has not yet been explored in a quantitative manner in complex
tumour morphologies.

Methods: To understand how these stromal and microenvironmental factors contribute to tumour physiology and
how oxygen distributes within them, we have developed a lattice-based multiscalar cellular automaton model. This
model uses principles of cytokine and oxygen diffusion as well as cell motility and plasticity to describe tumour-stroma
landscapes. Furthermore, to calibrate the model, we propose an innovative modelling platform to extract model
parameters from multiple in-vitro assays. This platform provides a novel way to extract meta-data that can be used to
complement in-vivo studies and can be further applied in other contexts.

Results: Here we show the necessity of the tumour-stroma opposing relationship for the model simulations to
successfully describe the in-vivo stromal patterns of the human lung cancer cell lines Calu3 and Calu6, as models
of clinical and preclinical tumour-stromal topologies. This is especially relevant to drugs that target the tumour
microenvironment, such as antiangiogenics, compounds targeting the hedgehog pathway or immune checkpoint
inhibitors, and is potentially a key platform to understand the mechanistic drivers for these drugs.

Conclusion: The tumour-stroma automaton model presented here enables the interpretation of complex
in-vitro data and uses it to parametrise a model for in-vivo tumour-stromal relationships.
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Background
Tumours function as complex, interactive, multi-cellular
aberrant organs. Within the tumour microenvironment,
malignant cells exist amongst extracellular matrix, im-
mune cells, vasculature, lymphatic vessels, fibroblasts, and
other stromal cells. This tumour microenvironment can
exert pro- and/or anti-tumorigenic actions, depending on
context, while malignant cells create a permissive and sup-
portive tumour matrix by secreting stroma-modulating

growth factors, including PDGF, EGFR, VEGF, and TGF-β
[1]. These factors can activate the surrounding stroma,
causing the secretion of additional soluble molecules that
mediate extensive cross-talk between the tumour cells and
stromal components [2].
Stromal composition, architecture, and quantity var-

ies between patient tumour types, while tumour het-
erogeneity is a hallmark of patient tumours. It is now
well-recognised that complex tumour-stromal interac-
tions underlie tumour growth, progression, and inva-
sion. Recently, it has been demonstrated that the
tumour microenvironment can affect tumour patho-
physiology [3], therapeutic sensitivity, and response [4, 5].
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The recognition of the importance of the stromal com-
partment in treatment outcome has led to the develop-
ment of high throughput screens that incorporate a
stromal component in addition to a tumour cell compo-
nent for finding novel therapies. As such, it is necessary
to develop further insight into tumour-stroma interac-
tions to aid in the modelling of pre-clinical drug-response
data in patient tumours [6–8]. Furthermore, tumour stro-
mal morphology at tissue level was identified as a poten-
tial driver of drug efficacy in patient-derived xenografts
[9], also identified as determinant of tumour grade in
prostate cancers [10]. The origination of these patterns
(described in [11]) is in great measure the motivation of
this work.
Despite the important role the tumour microenviron-

ment, few pre-clinical tumour models include an
extensive desmoplastic stroma or three dimensional
interaction [12]. Here is when simulation work becomes
a key translational tool. Recent work in the field of mod-
elling has explored the interactions between tumour-
immune cells and nutrients in a multiscalar manner
[13–15], also incorporating an in-depth study of intra-
cellular mechanisms [16] and oxygen [17], as well as the
role of peripheral anatomical features in disease progres-
sion, such as ductal niches [18]. However, to our know-
ledge, there has been no attempt to predict in-vivo
tumour-stroma growth and progression using merely in-
vitro assays (see Fig. 1), we consider this a step forward
in translational science. For simplicity, we describe two
models: 1) the parameter estimation model (PEM) is
used to calibrate 2) the tumour-stroma model (TSM),
which is a cellular automaton.

Methods
Tumour-stroma model (TSM)
The TSM is a predictive multiscale lattice-based cellular
automaton model described by eight parameters (Figs. 1
and 2b) whose values can be estimated with the param-
eter estimation model (PEM) defined below. The TSM
was inspired by a previously developed oxygen-centred

model [19, 20] and the subsequent discovery that
tumour-stroma morphology affects therapeutic response
[9]. The model considers two cell types: stroma and
tumour, whereby the latter can exist in three states: vi-
able, hypoxic, or necrotic. These states depend on the
cells’ access to oxygen and a time component (Fig. 2a).
The model is built on a fixed 2D regular lattice in

which each square element (or voxel) represents
groups in the range of thousands of cells of one kind.
These cells, based on their position in space, behave
metabolically different. Further, the model considers
delays inherent to the biological processes, such as
cell cycle progression, which are orchestrated by an
internal clock defined by the variable tau (τ) in the
time domain.
Our virtual tumour is composed of four types of cells

which behave in four ways:

� tumour cells may proliferate at a rate proportional to
their access to oxygen and nutrients modelled as a
characteristic doubling time (αT) and never until
reaching a minimum time to divide (τ > βT) [20] (see
equation (11)),

� tumour cells may undergo reversible hypoxia if their
oxygen concentrations sink below a threshold (hH)
for long enough (τ > βH) (see equation (14))

� hypoxic cells may irreversibly become necrotic cells if
they are hypoxic for long enough (τ > βN) (see equation
(15)),

� stromal cells may migrate in a random walk manner
(controlled by μS) or may be recruited close to the
tumour (regulated by kS), see equations (12)-(13).

Up until now the relationship between tumour and stro-
mal tissue assumed in the model is cooperative-only.
However, the stroma confers stiffness to the tumour
matrix, thereby constraining growth. Since the model is
built on a fixed lattice, there is a natural impossibility to
translocate or divide if there is no empty space around and
so, this constraint is built into the model, where h is the

Fig. 1 Schema of the models proposed and their integration with data

Delgado-SanMartin et al. BMC Medical Informatics and Decision Making  (2017) 17:70 Page 2 of 12



sum of empty spaces in the Moore neighbourhood of the
cell in question (see equation (11) and (13)).
The model equations were written assuming that,

1) the tumour mass is composed of tumour tissue
(in three states: viable, hypoxic, and necrotic) and
stroma (containing fibroblasts, immune infiltrate,
and vasculature);

2) all processes contain pure time delays, i.e. the cells
have to spend a minimum time in the cell cycle
before dividing; we avoid hereby the non-realistic
instantaneous cell division;

3) hypoxia and necrosis appear sequentially following
increasing exposure to oxygen deprivation;

4) hypoxia is reversible, providing oxygen levels are
recovered;

5) stromal tissue has a purely synergistic biochemical
relationship with tumour tissue, supplying oxygen
and nutrients; and

6) the high stiffness of the stroma may limit tumour
progression.

These simple assumptions are enough to demonstrate
the morphological and biomechanical roles of the stroma
in different tumour phenotypes.

Definition of oxygen distribution
Define now the simplest problem in which within a
tumour space V, there is one single element of stroma
carrying functional vasculature that serves as a source of
oxygen located at the point xso{xso, yso} ⊂V (see Fig. 2a).
The equations of oxygen diffusion are based on the
Fick’s law of molecular diffusion,

dPO2

dt
þ ∇ D⋅∇PO2ð Þ ¼ kRPO2 ¼ R; ð1Þ

where, PO2 is the oxygen partial pressure and D and kR
are the diffusion and oxygen uptake rate by the cells
(Rate R) and t is a time variable.

Assuming first that the diffusion process occurs
much more rapidly than the accumulation of HIF1α
and the structural changes at tissue level, we can ap-

proximate Eq. (1) to a quasi-steadystate dPO2
dt ≈0

� �
.

With this and assuming that the diffusion coefficient
is independent of the location in the tissue
D≠f spaceð Þð Þ, we obtain,

D⋅∇2PO2 ¼ kRPO2: ð2Þ
Define PO2(xs) ∈ ℝ2 as the map of oxygen computed

for the first single point (xs ∈ V). Now let us define
the boundary conditions as (1) Diritchlet boundary at
the stromal cell, where the concentration of oxygen
should match the oxygen concentration in blood
giving the constant PO2(xs) = PO2

blood and (2) Neumann
bounds at the stroma cell, where there is a maximum
(∇PO2(xs) = 0), and oxygen decreases gradually until in-
finity (∇PO2 ∞ð Þ ¼ 0).
There is no analytic closed-form solution of the

Eq. (2) for the given boundary conditions when the
number of stromal cells grow. However, a reasonable
equation contained in the solution space should
contain the terms,

PO2;s ¼ C1⋅e−C2jjx−xsjj þ C3⋅eþC4jjx−xsjj; ð3Þ
defined in the whole of V and where | |x − xs|| repre-
sents the Euclidean norm to the stromal cell in question.
Now simply for the boundary conditions to be true, the
expression C3 ¼ 0 has to hold. This simplifies things
significantly giving the expression

PO2;sðx−xsÞ ¼ C1⋅e−C2jjx−xsjj; ð4Þ
for one single stromal cell. Applying the boundary con-
ditions described before and assuming that the constant

is a function of the uptake rate we obtain C2 ¼
ffiffiffiffiffi
kR
9D

q
and c1 ¼ Pblood

O2 for a single stromal cell.
However, in our reality we consider a growing number

of stromal cells, whereby the analytic solution of this is
not generalisable. To extend this approach to the multi-

Fig. 2 Schema of the TSM showing the valid decisions (a) and parameters of the model (b)

Delgado-SanMartin et al. BMC Medical Informatics and Decision Making  (2017) 17:70 Page 3 of 12



source distribution, unlike for linear systems, the super-
position principle cannot be applied. In this case, we will
use a convenient approach in which the total equivalent
distance will be calculated as the reciprocal sum of the
distance to each stromal cell:

jjx−xsjjeq ¼ 1=
XSð1=jjx−xsjjsÞ: ð5Þ

Despite this being just a merely convenient approach,
the approximation is valid to the degree of accuracy
required as demonstrated in Additional file 1.

Lastly, we ought to find the function C2;eq ¼ f kR
D

� �
for

the multiple source case, which we obtained empirically
as

C2;eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcorr⋅kR
9⋅D

r
ð6Þ

with fcorr∈R and fixed value of fcorr ¼ 400 obtained by
minimising the disparity between the analytic solution
produced by Eq. (5) and the numeric solution computed
with a Gauss-Seidel algorithm as further explained in
Additional file 1. The Eqs. (4), (5), and (6) summarise in

PO2;sðx−xsÞ ¼ PO2;s⋅e−
20
3 k

0
R jjx−xsjjeq ð7Þ

which was taken as the final expression used for the
simulations of this model, with kR'=√kR/D as the appar-
ent oxygen uptake rate.

Definition of tumour growth
For the tumour cells, the oxygen uptake is directly
proportional to the division rate. The proliferation
constant is represented by a time constant αT and a
pure time delay βT , therefore the proliferation rate
can be expressed as

ΔT τð Þ
Δτ

≈
dT τð Þ
dτ

¼ PO2 xð Þ
αT

⋅T τ−βT
� �

:

ð8Þ
Now substituting the oxygen levels on (7) with

the Eq. (8) and integrating between
Z

dT τð Þ
T τ−βT
� � ¼

Z τ

τ¼βT

PO2 xð Þ
αT

dτ we obtain

T τð Þ
T βT
� � ¼ e

PO2 xð Þ
αT τ−βT

� � ð9Þ

where βT is the time at which the probability for transi-
tion is non-zero. This will be represented with a step
function H τ� βT

� �
with H being a one dimensional

Heaviside function. Now since the logical expression:
T τð Þ > T βT

� �
∀τ > βT holds, we invert the Eq. (9) to

determine the fraction of cells that divided at any
given time compared to the initial ones,

XT→2T τð Þ ¼ 1−
T βT
� �
T τð Þ ¼ 1−e

−PO2 xð Þ
αT τ−βT

� �
∀ τ > βT

ð10Þ

where XT→2T τð Þ symbolises the fraction of cells that
divide.
Subsequently, if we take the continuous deterministic

fraction of dividing cells just defined in Eq. (10) in
discrete terms, it follows that for each single cell with
oxygen level defined by its position, the probability for it
to commit to the cell cycle is statistically proportional to
the fraction of proliferating cells ( Pr T→2Tð Þ∝XT→2T ).
However, in this case this probability is truncated by the
pure time delay (defined as a Heaviside step function)
and the availability of space to divide, where the expres-
sion (10) substituting for Eq. (7) gives the final
expression (11).
In turn, stromal cells may be recruited with prob-

ability (12) and move with probability (13). Lastly,
tumour cells may become hypoxic and subsequently
necrotic with probabilities governed by the age of
cells and oxygen reach as described in (13) and (14).
The equations and a graphical display are summarised

below and in Fig. 2, whereas the codes can be found in
Additional file 2.

Summary of equations

The TSM was run stochastically at a time step of
Δt ¼ 3h on a square 2D lattice of 50×50 voxels. The
initial conditions are described in Additional file 1.
Once the probabilities have been calculated, the al-
gorithm should check the events one by one, com-
paring a random number to their probability. The
steps can be summarised as:

1. selection of time step Δt,
2. update time,

Tumour PrðT→2TÞ ¼ 1−e−e
−203 ⋅k

0
R ⋅jjx−xs jjeq ⋅ðτ−βTÞ=ðαTÞ

� �
⋅Hðτ−βTÞ; for h≠0; (11)

Stroma Recruitment△SðtÞ ¼ kS⋅TðtÞ⋅△t, (12)

Motility PrðS0→1Þ ¼ μS⋅Δt⋅SðτÞ=TðτÞ, for h≠0, (13)

Hypoxia Pr(T→ℋ ) = ℋ (τ − βℋ ) ⋅ℋ (PO2 − hℋ ) (14)

Necrosis Pr(ℋ→ N) = ℋ (τ − βN) (15)
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3. randomly select each possible event and compare
the probability of each event fe τ; rð Þ to a random
number,

4. update the state,
5. repeat 3–4 until all possible events have been

checked,
6. repeat from 2 until simulation time is reached.

Parameter estimation model
The PEM transforms both 2Dimensional cell culture and
3Dimensional tissue slice culture biomarker expressions
into the in-vivo parameter values of the TSM using a
number of mathematical strategies graphically summarised
in Fig. 2a. Briefly, the PEM is subdivided into five
modules: growth curve module, immunohistochemistry
(IHC) image processing module, heterogeneity module,
Western blot module, and the oxygen-diffusion module. A
mathematically formal description of these modules is
provided below.

Growth curve module
Tumour parameters αT and βT will be calculated from in-
vitro cell confluence assays on the cell line MCF7. We use
the mean of the populations of cells as the expected value
for a quasi-exponential cell growth with constant 1=αT
(see Fig. 3a, fit) and the standard deviation as a measure
of the diversity in the delay for the cells to commit to the
cell cycle (βT). Let Cn tð Þ be the % of confluence, t the time
measured, and σCn tð Þ the standard deviation. We can then
define our parameters as,

αT ¼ 1
t

� �−1

� Ln Cnð Þ; and ð16Þ

βT ¼ αT⋅Ln
Z t¼50h

t¼0h
σCn tð Þ⋅dt

� �
; ð17Þ

where the linear matrix product in Eq. (16) was solved
by Gaussian elimination. All units are in hours.
The results for both parameters for the cell line MCF7

are αT ¼ 9:23h and βT ¼ 18:17h, which together sum up
to 27.4 h. Surprisingly, this value is very close to the
doubling times reported in the literature (20–40 h [21])
and somewhat higher to the doubling time calculated
from the same data set (20.64 h).

Immunohistochemistry (IHC) module
We now concentrate on the spatial distribution of
hypoxia biomarkers to estimate oxygen diffusion param-
eters. IHC was carried out on paraffin embedded tissue
slice sections as has been previously described in Davies
et al. [22]. To calculate delays in the onsets of hypoxia
and necrosis we used tissue culture experiments on
thirteen different slices, which after isolation, sectioning,

and staining we quantified digitally and discretised
evenly with the so-called Tissue Culture Profiling (TCP)
algorithm (as described in the Additional file 1), giving
the results shown in Fig. 3c. Judging by the mismatch
between the two curves at 24 h and 48 h (see Fig. 3c)
there is a delay in the onset of HIF1α, also previously
described as inherent to the cell biology [23]. We calcu-
lated these delays in the onset of hypoxia with the so-
called threshold-based method which utilises a binary
onset of hypoxia at a certain absolute oxygen level
threshold value, although other methods have been ex-
plored as summarised in [11].
This method utilises the absolute curve shift between

the curves at 24 and 48 h for 20% expression of HIF1α
and 10% of necrosis as the standards to calculate the de-
lays. The parameters can be calculated with

βH ¼ 50
nl 20%Hyp; 24hð Þ−nl 20%Hyp; 48hð Þj j 24h ; and

ð18Þ

βN ¼ 50
nl 10%Nec; 24hð Þ−nl 10%Nec; 48hð Þj j 24h ;

ð19Þ

where βH and βN are the delays of hypoxia and necrosis
for the threshold-based method. Their values are
βH ¼ 139h and βN ¼ 184h , which correspond to
43 μm and 32 μm of curve shift respectively.

Heterogeneity module
The heterogeneity module uses imaging data to output a
measure of stromal heterogeneity, which we define based
on the fractal dimension of the 2D image. We estimate
fractal dimensions via a counting-box algorithm, which
counts boxes of decreasing sizes needed to cover the
region of interest of our image. The total count of boxes
(�) is then fitted to a line in a double-logarithmic scale
and extrapolating it to size zero. Thus,

D0 ¼ lim∈→0−
logNð�Þ
log ∈−1ð Þ : ð20Þ

From the fractal dimensions, a single value of the
heterogeneity has been taken into account (assuming for
a 2D image), where the heterogeneity is a deviation from
the “integer” dimension, thus

ΨF ¼ 2−D0; ð21Þ

where ΨF represents the heterogeneity calculated from
the fractal dimension.
Finally, the stromal parameters are described directly

by the total quantification and by the heterogeneity
factor, as
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kS ¼ d S=Tð Þ
10⋅dt

; and ð22Þ

μS ¼
d Ψ F= S=Tð Þð Þ

dt
; ð23Þ

where ΨF is again the fractal heterogeneity and S/T is
the stroma to tumour ratio, usually expressed as a per-
centage. Note that T refers only to the tumour fraction
and not the total, hence T ¼ Total� Sð Þ . The value of
10 is a convenient number added to counterbalance the
error introduced by the analysis of a cross-section in lieu
of the whole tissue culture in-vivo.
Now accounting for the available data we obtain,

kS≈
ΔS=T
Δt

≈
S=T 48hð Þ−S=T 24hð Þ

10⋅ 48−24ð Þ ; and ð24Þ

μS≈
ΨF 24hð Þ=S=T 24hð Þ−ΨF 0hð Þ=S=T 0hð Þ

24−0
ð25Þ

for both parameters respectively which results in values
of 0.064 h−1 (Str/T)−1 and 0.0031 h−1 (Str/T)−1. This
calculation has been summarised in Fig. 3b.

Western blot module
To find the oxygen concentration at which HIF1α is
expressed, the MCF7 cell line was cultivated in-vitro at
different oxygen concentrations (1, 5, and 21%) and then
Western blots [24] were run for HIF1α. Standard
Western blot protocols were used, HIF1α (#610959, BD
Biosciences, 1:250 dilution). The intensity of the
chemoluminescense is proportional to the amount of
HIF1α in the sample (see Fig. 3d). The experiments were

Fig. 3 Results of parameter estimation from in-vitro data on the cell line MCF7. a 2D in-vitro cell growth from Incucyte data, as % of cell confluence
(left) and standard deviation (right). They were used to calculate αT and βT respectively. b Illustration of HIF1α histopathology segmentation by colour
deconvolution. The segmented patterns in red were quantified and the calculated the fractal dimension to estimate μs and ks. c Example of HIF1α
(top) and H&E (bottom) used to quantify the transversal distribution of hypoxia and necrosis (right). d Western blot data (n=3) showing the correlation
of expression of HIF1α with atmospheric oxygen
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done on two separate occasions: first 1 and 21% O2

atmospheres were used, then 5 and 21% O2 with a total
of 12 measurable points. Since the chemiluminescent
exposure may have been slightly different, the sample
results have been linearly normalised for the reference
average of 21% O2.
The results show a fair exponential distribution (as

expected) with formula

%HIF1α ¼ 100⋅e−24⋅CO2 ;CO2 in mmol=L; and ð26Þ
for which an arbitrary expression of 20% of HIF1α would
need around 0.064 mmol/L of oxygen in tissue or
around 5% of atmospheric oxygen in culture (see Fig. 3d).
The estimation has been done with a naïve-pooled
algorithm with the 12 points depicted in Fig. 3d.

Oxygen diffusion module
In this module, we attempt to calculate oxygen diffusion
parameters as described in Eq. (2) by means of a tissue
slice experiment. The geometry of the slice leads to the
one dimensional resolution of Eq. (2) solved in Cartesian
coordinates, with Dirichlet boundary conditions for
both sides of PO2 xfilterð Þ ¼ 0:28mmol=L and PO2 xairð Þ ¼
1:19mmol=L , being these calculated from themody-
namic equilibrium expressions (see section Additional
file 1). These quantities are comparable to the cava re-
turn veins and alveolar concentrations [25]. The ap-
proximate analytic expression results in

PO2 xð Þ ¼ PO2 xairð Þ⋅
cosh k

0
R⋅x

� �
cosh k

0
R⋅xair

� � ð27Þ

whereby k′R ¼ ffiffiffiffiffiffiffiffiffiffiffi
kR=D

p
and x; xair are the 1D positions in

the transversal direction of the slice. Note that in
this case the origin of coordinates was set at the
filter ( xfilter ¼ 0 ). A two dimensional version of the
algorithm was also discussed in [11].

Summary of results of the PEM
The complete parameter set has been estimated for the
cell line MCF7 only, which results are presented in
Table 1. To expand the use of the model and test the
formation of complex stromal patterns, we decided to
explore the cell lines Calu3 and Calu6, which demon-
strate very different stromal morphological features
between them. However, data availability is limited for
the last two cell lines. To solve this problem, the values
of parameters βH ; βN ; k

′
R; andhH were assumed to be

the same as for MCF7, whereas the values of αT; βT; kS;
andμS were estimated using the ratio αT=βT unchanged
but corrected for the doubling times of the cell lines
(35 h for Calu3 and 26 h for Calu6 [26]) and the whole
tumour histological images to correct for the stromal

recruitment. For the codes and examples on the PEM
see Additional file 3.

Results & discussion
Once the algorithms have been presented and the
parameters estimated, it follows to analyse the potential
of their tumour-stromal model in the different
phenotypes.

Simulations on complete parameter set from parameter
estimation model
Using the parameters obtained from the in-vitro plat-
forms for MCF7 summarised in Table 1, we have made
simulations to build Fig. 4a. In this figure, we observe
that the necrotic and hypoxic regions appear concentric-
ally as it does in reality (see IHC image on Fig. 4a and
Ref. [27]); the oxygen levels are very low; and the viable
rim is of almost constant thickness, which is consistent
with numerous observations [28]. All these properties
are congruent with the literature and our data; and are
futher equivalent to those of an avascular tumour.
However, the values reported for MCF7 obtained

from the fitting of other in-vivo models [19] resulted
to be k′R ¼ 7:54cm�1 which is 24.5 times smaller than
that reported in the here estimated in-vitro system.
This –as reported in by the authors in Ref. [19] - is
due to the increased oxygenation proportionated by
the angiogenenic vessels. If we now simulate the same
system changing the value of k′R , we observe that
there is no apparent difference in the distribution of
stroma. However, the viability of the tissue has chan-
ged, as the whole tissue is well perfused and viable
(Fig. 4a). The actual linear oxygen reach now would
have increased to 6.5 mm. This does not reflect the
real tissue distribution as shown by the IHC (Fig. 4f )
but will be useful to emulate a number of clinically
possible scenarios as we will see later on.

Table 1 References for the algorithms contained in each module
used to calculate each parameter of the model for the cell lines
MCF7, Calu3, and Calu6

Parameter Units Value

MCF7 Calu3 Calu6

αT h 9.23 11.4 8.7

βT h 18.17 23.2 17.24

βH h 139 139 139

βN h 184 184 184

kR' cm−1 185 185 185

hH mmol/L 0.064 0.064 0.064

kS h−1 (Str/T)−1 0.0031 0.017 0.0041

μS h−1 (Str/T)−1 0.0013 0.0013 0.0013
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The model predictions for k′R value of 185cm�1 fail to
represent the growth rate accurately, although the esti-
mations are within a close range to the data (see Fig. 4d),
whereas for the value of 7:54cm�1 the predicted growth
mimics almost perfectly the growth rate (see Fig. 4d).

The overall growth rates differ by 82.4% at the end of
the study, which is a remarkable difference (Fig. 4c-d).
The moderate stromal growth (~25% at 0 days to 17.5%
and 11.7% at 30 days) is slightly higher than that of the
real observations, where the proportion of the stroma at

Fig. 4 Thirty day simulation for the parameters estimated on Table 1 for the cell line MCF7 in 2D. a Results with kR
' = 185cm− 1. Top row shows

oxygen heat maps (scale 0–0.46 mmol/L) on different days, middle row shows the cell distribution and bottom row heat maps of age
(scale 0–24 h). Picture on the right is a sample IHC for MCF7 stained for HIF1α with necrotic and hypoxic regions outlined. b results with

k
0
R ¼ 7:54cm−1 . c-d Volumetric results for kR

' = 185cm− 1 and k
0
R ¼ 7:54cm−1 respectively. e Calculated values of heterogneity. f Observed

surface area coverage of necrosis, hypoxia and stroma as determined by expert digital pathology
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the end of the study lies around 4:1%� 3:4% at day 30
(n=8, Fig. 4f ). It is important to point out that those
values were calculated by manually outlining the visual
stromal regions on images stained for HIF1α. This
means that the values may (and probably will) vary
greatly when stained for activated stroma (αSMA). How-
ever, due to the lack of time and staff those experiments
were not conducted. The predicted proportions of
hypoxia (24.3%) and necrosis (48.6%) are likewise
within the ranges of the observed values with means
of 36:8%� 7:1% (n=10) and 36:7%� 14:1% (n=8) re-
spectively (Fig. 4f ).
It is interesting that the modification of the oxygen

uptake rate alone is sufficient to simulate vastly different
possible clinical scenarios, however none of those is
completely congruent with both the growth rate and
stromal distribution phenotypes (see Fig. 4). On the one
hand, a low k′R will provide with high rates of prolifera-
tion to the cells with space to proliferate, which is con-
sistent with the overall growth rates observed. On the
other hand, we see a large necrotic core forming in the
tumour, which is indicative that k′R is actually a function
of the tumour position with radial geometry.

Modelling the different phenotypes: Calu3 and Calu6
The parameters estimated for Calu3 and Calu6 (Table 1)
were used in the equations (11)-(15) to simulate the
results shown in Fig. 5. Firstly, Calu6 (Fig. 5b) shows a
very similar profile as the one shown on the MCF7 cell
line (owing to the similar parameter values, compare
Table 1), which again is congruent with reality, as Calu6
and MCF7 present with similar histological profiles.
However, when we look at Calu3 the situation

changes. Note that the only parameters that differ are
the proliferation rates αT and βT , and the stromal re-
cruitment kS (Table 1). Now, if we look at the oxygen
maps, these have changed significantly. The growing
representation of the stromal tissue raises oxygen levels
keeping the tissue viable. We observe this in the
increased viable rim on Fig. 5a-b. The heterogeneity of
Calu3 seems to be also lower, breaking with the concen-
tric symmetry observed in the other two cell lines Calu6
and MCF7.
After validation of the patterns observed for Calu3

and Calu6 it is worth examining the volumetric growth
rates predicted by the model (see Fig. 5c). The key ob-
servations here are that the proportion of stroma in
Calu3 is significantly higher; at 15 days the hypoxic frac-
tion has disappeared in Calu3 while it grows steadily for
Calu6; and consequently the necrosis fraction reaches a
plateau for Calu3 whereas for Calu6 it continues
expanding (Fig. 5a-b).

Tumour volumes calculated with the TSM are higher
than the data (Fig. 5c), although within similar ranges.
Most importantly, the global growth speed of either in-
vivo model is incongruent with the data, because the
simulated Calu3 grows faster than simulated Calu6,
which is in conflict with empirical observations.
In terms of stroma, when Calu3 and Calu6 tumour

xenografts are analysed by IHC we observe that not only
the amount of stroma is significantly higher in Calu3,
but also the Mean Vascular Density (MVD), which nega-
tively correlates to the amount of necrosis in these
images, see Additional file 1). The quality of the vessels
observed in average was similar in both models with no
significant differences in vessel thickness, vascular area,
lumen area or vessel perimeter (see Additional file 1).
The simulations produced by the original parameter

set (k′R ¼ 185cm�1 ) fail to reproduce the heterogeneity
at the end of the study for MCF7, whereas for the
adapted parameter set ( k′R ¼ 7:54cm�1 ) the heterogen-
eity values are very close to the data (Fig. 4e). Moreover,
the values of heterogeneity observed in the simulations
for Calu3 and Calu6 mirrors almost perfectly the data
(Fig. 5d). All trends are downwards with the progression
of time, which is consistent with the visual inspection of
the images and the general rise in entropy of the distri-
bution of stromal cells (Fig. 5a-b and Fig. 4a-b). Interest-
ingly, the evolution of heterogeneity for the adapted
parameter set for MCF7 corresponds to the one ob-
served for Calu3.
Simulations with parameter sets for both cell lines

show remarkable similarities between the tumour,
stroma, necrotic, and hypoxic cell distributions and the
tumour histopathology observed for Calu6 (Fig. 5a) and
Calu3 (Fig. 5b) when grown in-vivo. It is notable that
the viable rim in each simulated phenotype varies signifi-
cantly, as demonstrated by the oxygen distribution maps
(Fig. 5a-b, top row). However, results on the total
tumour volume show that the growth dynamics of the cell
line Calu6 are well captured (Fig. 5c), whereas the cell line
Calu3 appears to grow faster in the model simulations
than in reality (Fig. 5c). This effect reveals that the
tumour-stroma relationship might not only be synergistic
by providing growth factors and nutrients to the tumour,
but it might actually constraint its growth mechanically
(fibrous stroma confers rigid extracellular matrices with
lesser room for cell proliferation [29, 30]), and chemically
(cytotoxic components of the immune infiltrate play an
active role in the retardation of tumour growth [31]).
Lastly, a comprehensive analysis of various simulation

settings in terms of time step, lattice size, or lattice di-
mensionality (3D) will be an interesting exercise which
will provide with other insights of the TSM. Especially
interesting will be the usage of a cell resolution lattice
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and a sufficiently short time step to properly capture dif-
fusion of macromolecules and changes in cell polarity.
These computations require high specification hardware
and computation time.

Conclusions
The PEM was a useful platform to generate in-vivo-
relevant parameter values from in-vitro data; neverthe-
less its usage relies upon the availability of the in-vitro
assays mentioned above. To circumvent this, we pro-
posed a feasible parameter extrapolation method which
resulted valid and may be useful to other scientists. The
results generated by the PEM-calibrated TSM for the
two cell lines Calu3 and Calu6 demonstrate that the
tumour-stroma mutually-positive relationship assumed
here does not represent both the stromal patterns and
growth rates simultaneously. This means that while the
stroma constrains growth by limiting space to grow,

these effects do not explain the slower growth rate of
Calu3 (Fig. 5c). Experimentally we observe an increase
in thickness of the viable tumour rim of the Calu3
model, which is explained by the exacerbated blood
vessel-carrying stromal recruitment described with the
TSM. Overall, these models suggest that at a tissue level,
the stroma limits tumour growth, and at a molecular
level, the stroma fosters tumour viability. Empirically, it
has been shown in-vitro that stromal components
provide growth-limiting molecular signals in the form of
cell-sequestering factors (not built into our model) [1],
which may explain the disparity in predicted and
observed tumour growth.
Our in-vitro-calibrated mathematical models describe

aspects of in-vivo tumour biology extrinsic to the tumour
cell, which may provide a valuable addition to existing
predictive models, such as cancer pharmacokinetic-
pharmacodynamic-efficacy models developed using cell

Fig. 5 Tumour-stroma model and results. a Tissue pattern results for oxygen, age and cells with example IHC tumour cross-section for Calu3.
b Tissue pattern results for oxygen, age and cells with example IHC tumour cross-section for Calu6. c Growth curve results. d Evolution of heterogeneity
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line-derived xenograft models. This adds another dimen-
sion to simplistic tumour models which may allow us to
better predict the effect of drugs in morphologically-
complex clinically-relevant pathophysiologies [3, 9].

Additional files

Additional file 1: Supplementary material: This file contains additional
information on the experiments conducted and the raw results as well as
algorithmic detail of the scripts that quantify the distribution of IHC stain
within a tissue culture, and the calculation of the oxygen concentrations
at either interface of the tissue slice. (PDF 927 kb)

Additional file 2: mainTSM_Code: Main script for the Tumour-Stroma
Model (TSM). This script is a stand-alone script that simulates the model
given certain parameter values and initial conditions. (CPP 9.34 kb)

Additional file 3: PEM_Code: Compressed folder containing the codes
for the Parameter Estimation Model algorithms and example figures.
These scrips are stand-alone and contain all the necessary information to
replicate the data in the manuscript. (7Z 8793 kb)
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